Skip to main content

Model assessment and verification

  • Conference paper
  • First Online:
Air Pollution Modeling and its Application XX
  • 1036 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Seaman, N.L., 2000. Atmospheric Environment, 34, 2231–2259.

    Article  CAS  Google Scholar 

  • Beaver, S. et al., 2008. A&WMA Ann. Conf. and Exh., #623, Portland, OR.

    Google Scholar 

  • Abbatt, J.P.D., Broekhuizen, K., Pradeep Kumar, P. (2005). Cloud condensation nucleus activity of internally mixed ammonium sulfate/organic acid aerosol particles. Atmospheric Environment, 39, 4767–4778.

    Article  CAS  Google Scholar 

  • Hagino, H., Takada, T., Kunimi, H., Sakamoto, K. (2007). Characterization and source presumption of wintertime submicron organic aerosols at Saitama, Japan, using the Aerodyne aerosol mass spectrometer. Atmospheric Environment, 41, 8834–8845.

    Article  CAS  Google Scholar 

  • Kawamura, K. and Yasui, O. (2005). Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere. Atmospheric Environment, 39, 1945–1960.

    Article  CAS  Google Scholar 

  • Limbeck, A., Kraxner Y., Puxbaum, H. (2005). Gas to particle distribution of low molecular weight dicarboxylic acids at two different sites in central Europe (Austria). Journal of Aerosol Science, 36, 991–1005.

    Article  CAS  Google Scholar 

  • Limbeck, A., Puxbaum, H., Otter, L., Scholes, M.C. (2001). Semivolatile behavior of dicarboxylic acids and other polar organic species at a rural background site (Nylsvley, RSA). Atmospheric Environment, 31, 1853–1862.

    Article  Google Scholar 

  • Pankow J. F., 1994. An absorption model of the gas/particle partitioning of organic compounds in the atmosphere. Atmospheric Environment, 28, 185–188.

    Article  CAS  Google Scholar 

  • Peng, C., Chan, M.N., Chan, C.K. (2001). The hygroscopic properties of dicarboxylic and multifunctional acids: measurements and UNIFAC predictions. Environmental Science and Technology, 35, 4495–4501.

    Article  CAS  Google Scholar 

  • Byun, D., Schere, K.L. 2006. Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev., 59, 51–77.

    Article  Google Scholar 

  • Gilliland, A.B., C. Hogrefe, R.W. Pinder, et al., 2008. Dynamic evaluation of regional air quality models: Assessing changes in O3 stemming from changes in emissions and meteorology. Atmos. Environ., 42, 5110–5123.

    Article  CAS  Google Scholar 

  • NESCAUM, 2006. The Nature of the Ozone Air Quality Problem in the North east: A Conceptual Description. October 2006, Boston, MA. (http://www.nescaum.org/topics/air-pollution-transport )

  • USEPA, 2005. Evaluating Ozone Control Programs in the Eastern United States:Focus on the NOx Budget Trading Program, 2004, EPA454-K-05-001. (http://www.epa.gov/airmarkets/ progress/progress-reports.html)

  • Kaufman, Y. J., Tanre D., Remer L. A., Vermote E. F., Chu A., Holben B. N. (1997) Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer, J. Geophys. Res, 102, D14. 17,051–17,067.

    Article  CAS  Google Scholar 

  • Sofiev, M., Galperin, M., Genikhovich, E. (2008) Construction and evaluation of Eulerian dynamic core for the air quality and emergency modeling system SILAM. NATO Science for piece and security Serties C: Environmental Security. Air pollution modelling and its application, XIX, Borrego, C., Miranda, A.I. (eds.), Springer, pp. 699–701.

    Google Scholar 

  • Sofiev, M., Siljamo, P., Valkama, I., Ilvonen, M., Kukkonen, J. (2006) A dispersion modelling system SILAM and its evaluation against ETEX data. Atmosph.Environ., 40, 674–685, DOI:10.1016/j.atmosenv.2005.09.069.

    Article  CAS  Google Scholar 

  • Stern, R., Builtjes P., Schaap M., Timmermans R., Vautard R., Hodzic A., Memmesheimer M., Feldmann H., Renner E., Wolke R., Kerschbaumer A. (2008) A model inter-comparison study focussing on episodes with elevated PM10 concentrations Atmosph. Environ., 42, 19, 4567–4588.

    CAS  Google Scholar 

  • Potempski S Galmarini S (2009) Est modus in rebus: Analytical properties of the multi-model ensembles. Accepted in Atmos. Chem. Phys. Discuss.

    Google Scholar 

  • Van Loon M et al. (2007) Evaluation of long-term ozone simulations from seven regional air quality models and their ensemble. Atmos. Environ. 41, pp. 2083–2097.

    Article  CAS  Google Scholar 

  • Alessandrini S. and E. Ferrero, 2009, A hybrid Lagrangian-Eulerian model for reacting pollutant dispersion in non-homogeneous non-isotropic turbulence, Physica A, 388. pp. 1375–1387

    Article  CAS  Google Scholar 

  • Brown R. J. and R. W. Bilger, 1998: Experiments On A Reacting Plume–1. Conventional Concentration Statistics, Atmospheric Environment, 32, No. 4, pp. 611–628

    Article  CAS  Google Scholar 

  • Chock D. P., Winkler S. L., 1994a: A particle grid air quality modeling approach, 1. Dispersion aspect , Journal of Geophysical Research, 99 D1, 1019–1031.

    Article  CAS  Google Scholar 

  • Chock D. P., Winkler S. L., 1994b: A particle grid air quality modeling approach, 2. Coupling with Chemistry , Journal of Geophysical Research, 1994, 99 D1, 1033–1041.

    Article  CAS  Google Scholar 

  • IUPAC 2005 Evaluated kinetic and photochemical data for atmospheric chemistry- IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. July 2005 web version http://www.iupac-kinetic.ch.cam.ac.uk/index.html

  • Parrish D.D., Murphy P.C., Albritton D.L., Fehsenfeld F.C. 1983. The measurements of the photodissociation rate of NO2 in the atmosphere, Atmospheric Environment Vol. 17, n°7, 1365–1379.

    Article  CAS  Google Scholar 

  • Pielke R. A., Cotton W. R., Walko R. L., Tremback C. J., Lyons W. A., Grasso L. D., Nicholls M. E., Moran M. D., Wesley D. A., Lee T. J., Copeland J. H. (1992) A Comprehensive Meteorological Modeling System RAMS. Meteorology and Atmospheric Physics, 49, 69–91.

    Article  Google Scholar 

  • Tinarelli G., Anfossi D., Bider M., Ferrero E. and Trini Castelli S. (2000) A new high performance version of the Lagrangian particle dispersion model SPRAY, some case studies, Air Pollution Modelling and its Applications XIII, S.E. Gryning and E. Batchvarova eds., Plenum Press, New York, 23.

    Google Scholar 

  • Climate Change 2007 – The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the IPCC (ISBN 978 0521 88009-1).

    Google Scholar 

  • Jacob D.J, Winner D.A. (2009) Effect of climate change on air quality, Atmopsheric Environment, 43, p. 51–63.

    Article  CAS  Google Scholar 

  • Krueger, B. E. Katragkou, I. Tegoulias, P. Zanis, D. Melas, E. Coppola, S. Rauscher, P. Huszar, T. Halenka (2008) Regional photochemical model calculations for Europe concerning ozone levels in a changing climate, Quarterly Journal of the Hungarian Meterological Service, 112, 3–4.

    Google Scholar 

  • Anteplioğlu U (2000). Modeling of surface ozone with UAM: a case study for Istanbul’, Ph.D. Thesis, Istanbul Technical University.

    Google Scholar 

  • Anteplioğlu, Topçu S., İncecik S. (2003) An Application of a photochemical model for urban airshed in İstanbul, Journal of Water, Air & Soil Pollution: Focus, 3; 53–64.

    Google Scholar 

  • Anteplioğlu, U, S. İncecik, S. Topçu, 2003, Model study with MM5 and CAMx in Istanbul area during high ozone days, (invited paper) International Symposium on Clean Environment, 21–22 November, Cheonan, Korea, 11–15, Nov. 2003

    Google Scholar 

  • Byun D.W and Ching J.K.S. (1999). Science Algorithms of the EPA Models-3CMAQ Modeling System. Washington, DC. USEPA.

    Google Scholar 

  • Im U Tayanç M Yenigün O (2006) Analysis of Major Photochemical Pollutants with Meteorological Factors for High Ozone Days in Istanbul, Turkey. Water, Air, and Soil Pollution, 175; 335–359.

    Article  CAS  Google Scholar 

  • Im U Tayanç M Yenigün O (2008) Interaction patterns of major photochemical pollutants in Istanbul, Turkey. Atmospheric Research. 89; 382–390.

    Article  CAS  Google Scholar 

  • Topçu S., Kahya c., İncecik S., Ercan S. G., Basar U. G. 2005. Review of surface ozone and its precursors in urban atmosphere of Istanbul, Turkey for 2002–2003. Proceedings of Air Quality Management at Urban, Regional and Global Scales, Volume 3, 1083–1093.

    Google Scholar 

  • Visschedijk, A.J.H., Zandveld, P.Y.J., Denier van der Gon, H.A.C.A., 2007. High Resolution Gridded European Emission Database for the EU Integrate Project GEMS, TNO-report 2007-A-R0233/B.

    Google Scholar 

  • Gryning, S.-E.; Batchvarova, E., Strengths/weaknesses of laboratory/field and numerical data. In: Proceedings. International workshop on quality assurance of microscale meteorological models, Hamburg (DE), 28–29 Jul 2005. Schatzmann, M.; Britter, R. (eds.), (European Science Foundation, Brussels, 2005) p. 85–93.

    Google Scholar 

  • Gryning S.-E. and Batchvarova E. 2009 Measuring Meteorology in Urban Areas – Some progress and many problems In proceedings: Meteorological and Air Quality Models for Urban Areas. Exeter (UK) May 3–4 2007. Baklanov, A., Grimmond, S., Mahura, A. and Athanassiadou, M., Springer, Dordrecht, Heidelberg, London, New York.

    Google Scholar 

  • Sreenivasan K.R., Chambers A.J. and R.A. Antonia, 1978: Accuracy of moments of velocity and scalar fluctuations in the atmospheric surface layer, Boundary-Layer Meteorology, 14, 341–359.

    Article  Google Scholar 

  • Stern R., Builtjes P., Schaap M., Timmermans R., Vautard R., Hodzic A., Memmesheimer M., Feldmann H., Renner E., Wolke, R., Kerschbaumer A. 2008. A model inter-comparison study focussing on episodes with elevated PM10 concentrations, Atmos. Env., 42, 4567–4588.

    Article  CAS  Google Scholar 

  • Tennekes H. and Lumley J.L. 1972. A first course in turbulence. MIT Press, Cambridge, Mass. 300 pp.

    Google Scholar 

  • Gilliland, A.B., R.L. Dennis, S.J. Roselle, T.E. Pierce, 2003: Seasonal NH3 emission estimates for the Eastern United States using ammonium wet concentrations and an inverse modeling method. J. Geophys. Res.-Atmos., 108, doi: 10.1029/2002JD003063.

  • Pinder, R.W., R.C. Gilliam, K.W. Appel, S.L. Napelenok, K.M. Foley, A.B. Gilliland, 2009: Efficient probabilistic estimates of surface ozone concentration using an ensemble of model configurations and direct sensitivity calculations. Environ. Sci. Technol., 43, 2388–2393.

    Article  CAS  Google Scholar 

  • Baklanov, A., Korsholm, U.: On-line integrated meteorological and chemical transport modelling: advantages and prospectives. In: Proc. 29 th ITM on Air Pollution Modelling and its Application. Aveiro. Portugal.

    Google Scholar 

  • Borrego, C. et al., 2009 Estimation of modelling uncertainty according to the EU air quality legislation: the Air4EU Berlin case, submitted Atm. Env.

    Google Scholar 

  • Boylan, J.W., A.G. Russel, 2006. PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models. Atm.Env. 40, 4947–4957

    Google Scholar 

  • Carmichael, G.R et al., 2007 Predicting air quality: current status and future direction. . Proc. 29 th ITM on Air Pollution Modelling and its Application, Aveiro, Portugal.

    Google Scholar 

  • Delle Monache, L and R.B. Stull, 2003. A comparison of regional oxidant model output with observed ozone data. Atm.Env.37, 3469–3474

    Article  CAS  Google Scholar 

  • Denby,B, et al., 2008. Comparison of two data assimilation methods for assessing PM10 exceedances on the European scale.Accepted for publication Atm.Env.

    Google Scholar 

  • Grell, G.A. et al., 2005 Fully coupled “online” chemistry within the WRF model. Atm.Env. 39 ( 37), 6957–6975

    Article  CAS  Google Scholar 

  • Hanna S.R., G.E. Moore, M.E. Frenau, 1996 Evaulation of photochemical grid models using data from the Lake Michigan Ozone Study. Atm. Env. 30, 9, 3265–3279

    Article  CAS  Google Scholar 

  • Hass, H et al., 1997 Comparison of model results obtained with several European regional air quality models. Atm.Env. 31, 19, 3259–3279

    Article  CAS  Google Scholar 

  • Hass, H. et al., 2003 Results and intercomparison from the European regional scale modelling systems-Aerosol modelling, EUROTRAC-ISS Rep.

    Google Scholar 

  • Loon, M. van et al., 2004 Model intercomparison in the framework of the review of the unified EMEP-model. TNO-Rep. R2004/282

    Google Scholar 

  • Loon, M et al., 2007 Evaluation of long term ozone simulations from seven regional scale air quality models and their ensemble average. Atm.Env. 41, 2083–2097

    Article  Google Scholar 

  • Meij, A. de, et al., 2009 The impact of MM5 and WRF meteorology over complex terrain on CHIMERE model calculations. Accepted for publication ACP.

    Google Scholar 

  • McKeen, S.A, et al., 2005 Assesment of an ensemble of seven real-time ozone forecasts over eastern North America during the summer of 2005. J.of Geoph. Res. 110 ( D21), D21307

    Article  Google Scholar 

  • Roemer, M. et al., 2003 Ozone trends according to ten different dispersion models. EUROTRAC-ISS Rep.

    Google Scholar 

  • Sartelet, K.N. et al., 2007. Simulation of aerosols abd gas-phase species over Europe with the Polyphemus system, Part 1-Model-to-data comparison for 2001. Atm.Env. 41, 6111–6118

    Google Scholar 

  • Stern, R.M. et al., 2008. A model intercomparison study focussing on episodes with elevated PM 10 concentrations. Atm.Env. doi:10.1016/j.atmosenv.2008.01.068.

  • Vautard, R. et al.: Skill and uncertainty of a regional air quality model ensemble. Accepted for publication, Atm.Env. (2008)

    Google Scholar 

  • Berri G.J. and M.N. Nuñez (1993) Transformed shoreline–following horizontal coordinates in a mesoescale model: A sea–land breeze case study, J. Appl. Meteorol., 5, 918–928 pp.

    Article  Google Scholar 

  • Berri G.J. (2007) Using a mesoscale boundary layer model forced with local observations to define the low-level wind field climatology over the La Plata River region, II Encontro Meteorologia Sul do Brasil, Florianopolis, Brasil, June 2007.

    Google Scholar 

  • Sraibman L. and G.J. Berri (2009) Low level wind forecast over La Plata River region with a mesoscale boundary layer model forced by regional operational forecasts, Boundary Layer Meteorology, 130, 3, 407–422, DOI 10.1007/s10546-009-9350-1

    Article  Google Scholar 

  • Hurley, P.: TAPM V4. Part 1: Technical Description. CSIRO Marine and Atmospheric Research Paper 25. ISBN 978-1-921424-71-7 (2008)

    Google Scholar 

  • Kossman, M., Sturman, A.P.: The surface wind field during winter smog nights in Christchurch and coastal Canterbury, New Zealand. International Journal of Climatology 24, 93–108 (2004)

    Article  Google Scholar 

  • Scire, J.S., Robe, F.R., Fernau, M.E., Yamartino, R.J.: A User’s Guide for the CALMET Meteorological Model (V5). Earth Tech, Inc., Concord, MA (1998)

    Google Scholar 

  • Smithson, J.: Inventory of emissions to air in Christchurch, 2006. Environment Canterbury Technical Report R08/70. ISBN 978-1-86937-885-1 (2008)

    Google Scholar 

  • Bucsela EJ, Celarier EA, Wenig MO, Gleason JF, Veefkind JP, Boersma KF, Brinksma EJ (2006) Algorithm for NO2 vertical column retrieval from the ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing 44:1245–1258.

    Article  Google Scholar 

  • Chinkin LR, Coe DL, Funk TH, Hafner HR, Roberts PT, Ryan PA (2003) Weekday versus weekend activity patterns for ozone precursor emissions in California’s South Coast air basin. Air & Waste Manage. Assoc. 53:829–843.

    CAS  Google Scholar 

  • Harley RA, Marr LC, Lehner JK, Giddings SN (2005) Changes in motor vehicle emissions on diurnal to decadal time scales and effects on atmospheric composition. Environ. Sci. Technol. 39:5356–5362.

    Article  CAS  Google Scholar 

  • Janssen et al. (1999) Weekday and weekend day temporal allocation of activity in the NONROAD model. Report prepared for the U.S. Environmental Protection Agency, Office of Mobile Sources by Nonroad Engine Emission Modeling Team, NR-015.

    Google Scholar 

  • Bloomfield, P. 2000. Fourier Analysis of Time Series: An Introduction. Wiley-Interscience; 2nd ed.

    Google Scholar 

  • CASTNET. 2006. Annual Report. prepared by MACTEC Engineering and Consulting, Inc. for the USEPA Clean Air Markets Division, Washington, D.C.

    Google Scholar 

  • Hogrefe, C., Lynn, B., Goldberg, R., Rosenzweig, C., Zalewsky, E., Hao, W., Doraiswamy, P., Civerolo K., Ku, J., Sistla, G., and P.L. Kinney. 2009. A combined model–observation approach to estimate historic gridded fields of PM2.5 mass and species concentrations. Atmospheric Environment 43: 2561–2570

    Article  CAS  Google Scholar 

  • Rao, S.T., and I.G. Zurbenko. 1994. “Detecting and tracking changes ozone air Quality”, J. Air & Waste Manage. Assoc., 44: 1089

    CAS  Google Scholar 

  • Zurbenko, I.G. 1986. The Spectral Analysis of Time Series. North Holland

    Google Scholar 

  • Zurbenko I., Porter P.S. 1998. Construction of high resolution wavelets, IEEE Journal of Signal Processing, vol. 65, pp. 315–327.

    Google Scholar 

  • Bell ML, Hobbs BF, et al. (2005) Metrics matter: Conflicting air quality rankings from different indices of air pollution, J Air Waste Manage, 55(1), 97–106.

    CAS  Google Scholar 

  • Bell ML, Peng RD, et al. (2006) The exposure-response curve for ozone and risk of mortality and the adequacy of current ozone regulations, Environ. Health Perspect., 114(4), 532–536.

    Article  CAS  Google Scholar 

  • Byun DW, and Schere KL (2006) Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality modeling system, Applied Mechanics Review, 59, 51–77.

    Article  Google Scholar 

  • Chestnut LG, Mills DM, et al. (2006) Cost-benefit analysis in the selection of efficient multipollutant strategies, J Air Waste Manage, 56(4), 530–536.

    CAS  Google Scholar 

  • Cohan DS, Boylan JW, et al. (2007) An integrated framework for multipollutant air quality management and its application in Georgia, Environ Manage, 40(4), 545–554.

    Article  Google Scholar 

  • Dunker AM (1984) The decoupled direct method for calculating sensitivity coefficients in chemical kinetics, J. Chem. Phys., 81(5), 2385–2393.

    Article  CAS  Google Scholar 

  • Morris RE, Koo B, et al. (2007) Technical Support Document for VISTAS Emissions and Air Quality Modeling to Support Regional Haze SIPs, 244 pp.

    Google Scholar 

  • Stedman JR, and Kent AJ (2008) An analysis of the spatial patterns of human health related surface ozone metrics across the UK in 1995, 2003 and 2005, Atmos Environ, 42(8), 1702–1716.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Iversen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Iversen, T., Gryning, SE., Jones, R., Galmarini, S. (2010). Model assessment and verification. In: Steyn, D., Rao, S. (eds) Air Pollution Modeling and its Application XX. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3812-8_4

Download citation

Publish with us

Policies and ethics