Advertisement

Model assessment and verification

  • T. Iversen
  • S.-E. Gryning
  • R. Jones
  • S. Galmarini
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Cluster Analysis and Classification of Wind Fields for Meteorological and Air Quality Model Validation

  • Scott Beaver
  • Saffet Tanrikulu
  • Douw Steyn
  • Yiqin Jia
  • Su-Tzai Soong
  • Cuong Tran
  • Bruce Ainslie
  • Ahmet Palazoglu
  • Angadh Singh

Abstract

Clustering of observed winds and classification of simulated winds were used for meteorological and air quality model evaluation. We simulated meteorology with MM5 and particulate matter (PM) with CMAQ for December to January 2000–2001 in the San Francisco Bay Area (SFBA). EOFs were used to classify simulated winds among the patterns identified by a previous clustering of observations. We investigated the match between the classification of the simulated winds and the original clustering. Agreement between the clustering of observed winds and the classification of simulated winds implies model validity. Disagreement serves as a diagnostic tool, indicating how inaccurately modeled winds may explain degraded air quality model performance. This novel framework...

Keywords

Emission Inventory Local Standard Time Ozone Monitoring Instrument Biogenic Emission Atmospheric Dispersion Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Seaman, N.L., 2000. Atmospheric Environment, 34, 2231–2259.CrossRefGoogle Scholar
  2. Beaver, S. et al., 2008. A&WMA Ann. Conf. and Exh., #623, Portland, OR.Google Scholar
  3. Abbatt, J.P.D., Broekhuizen, K., Pradeep Kumar, P. (2005). Cloud condensation nucleus activity of internally mixed ammonium sulfate/organic acid aerosol particles. Atmospheric Environment, 39, 4767–4778.CrossRefGoogle Scholar
  4. Hagino, H., Takada, T., Kunimi, H., Sakamoto, K. (2007). Characterization and source presumption of wintertime submicron organic aerosols at Saitama, Japan, using the Aerodyne aerosol mass spectrometer. Atmospheric Environment, 41, 8834–8845.CrossRefGoogle Scholar
  5. Kawamura, K. and Yasui, O. (2005). Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere. Atmospheric Environment, 39, 1945–1960.CrossRefGoogle Scholar
  6. Limbeck, A., Kraxner Y., Puxbaum, H. (2005). Gas to particle distribution of low molecular weight dicarboxylic acids at two different sites in central Europe (Austria). Journal of Aerosol Science, 36, 991–1005. CrossRefGoogle Scholar
  7. Limbeck, A., Puxbaum, H., Otter, L., Scholes, M.C. (2001). Semivolatile behavior of dicarboxylic acids and other polar organic species at a rural background site (Nylsvley, RSA). Atmospheric Environment, 31, 1853–1862.CrossRefGoogle Scholar
  8. Pankow J. F., 1994. An absorption model of the gas/particle partitioning of organic compounds in the atmosphere. Atmospheric Environment, 28, 185–188.CrossRefGoogle Scholar
  9. Peng, C., Chan, M.N., Chan, C.K. (2001). The hygroscopic properties of dicarboxylic and multifunctional acids: measurements and UNIFAC predictions. Environmental Science and Technology, 35, 4495–4501.CrossRefGoogle Scholar
  10. Byun, D., Schere, K.L. 2006. Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev., 59, 51–77.CrossRefGoogle Scholar
  11. Gilliland, A.B., C. Hogrefe, R.W. Pinder, et al., 2008. Dynamic evaluation of regional air quality models: Assessing changes in O3 stemming from changes in emissions and meteorology. Atmos. Environ., 42, 5110–5123.CrossRefGoogle Scholar
  12. NESCAUM, 2006. The Nature of the Ozone Air Quality Problem in the North east: A Conceptual Description. October 2006, Boston, MA. (http://www.nescaum.org/topics/air-pollution-transport )
  13. USEPA, 2005. Evaluating Ozone Control Programs in the Eastern United States:Focus on the NOx Budget Trading Program, 2004, EPA454-K-05-001. (http://www.epa.gov/airmarkets/ progress/progress-reports.html)
  14. Kaufman, Y. J., Tanre D., Remer L. A., Vermote E. F., Chu A., Holben B. N. (1997) Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer, J. Geophys. Res, 102, D14. 17,051–17,067.CrossRefGoogle Scholar
  15. Sofiev, M., Galperin, M., Genikhovich, E. (2008) Construction and evaluation of Eulerian dynamic core for the air quality and emergency modeling system SILAM. NATO Science for piece and security Serties C: Environmental Security. Air pollution modelling and its application, XIX, Borrego, C., Miranda, A.I. (eds.), Springer, pp. 699–701.Google Scholar
  16. Sofiev, M., Siljamo, P., Valkama, I., Ilvonen, M., Kukkonen, J. (2006) A dispersion modelling system SILAM and its evaluation against ETEX data. Atmosph.Environ., 40, 674–685, DOI:10.1016/j.atmosenv.2005.09.069.CrossRefGoogle Scholar
  17. Stern, R., Builtjes P., Schaap M., Timmermans R., Vautard R., Hodzic A., Memmesheimer M., Feldmann H., Renner E., Wolke R., Kerschbaumer A. (2008) A model inter-comparison study focussing on episodes with elevated PM10 concentrations Atmosph. Environ., 42, 19, 4567–4588.Google Scholar
  18. Potempski S Galmarini S (2009) Est modus in rebus: Analytical properties of the multi-model ensembles. Accepted in Atmos. Chem. Phys. Discuss.Google Scholar
  19. Van Loon M et al. (2007) Evaluation of long-term ozone simulations from seven regional air quality models and their ensemble. Atmos. Environ. 41, pp. 2083–2097.CrossRefGoogle Scholar
  20. Alessandrini S. and E. Ferrero, 2009, A hybrid Lagrangian-Eulerian model for reacting pollutant dispersion in non-homogeneous non-isotropic turbulence, Physica A, 388. pp. 1375–1387CrossRefGoogle Scholar
  21. Brown R. J. and R. W. Bilger, 1998: Experiments On A Reacting Plume–1. Conventional Concentration Statistics, Atmospheric Environment, 32, No. 4, pp. 611–628CrossRefGoogle Scholar
  22. Chock D. P., Winkler S. L., 1994a: A particle grid air quality modeling approach, 1. Dispersion aspect , Journal of Geophysical Research, 99 D1, 1019–1031.CrossRefGoogle Scholar
  23. Chock D. P., Winkler S. L., 1994b: A particle grid air quality modeling approach, 2. Coupling with Chemistry , Journal of Geophysical Research, 1994, 99 D1, 1033–1041.CrossRefGoogle Scholar
  24. IUPAC 2005 Evaluated kinetic and photochemical data for atmospheric chemistry- IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. July 2005 web version http://www.iupac-kinetic.ch.cam.ac.uk/index.html
  25. Parrish D.D., Murphy P.C., Albritton D.L., Fehsenfeld F.C. 1983. The measurements of the photodissociation rate of NO2 in the atmosphere, Atmospheric Environment Vol. 17, n°7, 1365–1379.CrossRefGoogle Scholar
  26. Pielke R. A., Cotton W. R., Walko R. L., Tremback C. J., Lyons W. A., Grasso L. D., Nicholls M. E., Moran M. D., Wesley D. A., Lee T. J., Copeland J. H. (1992) A Comprehensive Meteorological Modeling System RAMS. Meteorology and Atmospheric Physics, 49, 69–91.CrossRefGoogle Scholar
  27. Tinarelli G., Anfossi D., Bider M., Ferrero E. and Trini Castelli S. (2000) A new high performance version of the Lagrangian particle dispersion model SPRAY, some case studies, Air Pollution Modelling and its Applications XIII, S.E. Gryning and E. Batchvarova eds., Plenum Press, New York, 23.Google Scholar
  28. Climate Change 2007 – The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the IPCC (ISBN 978 0521 88009-1).Google Scholar
  29. Jacob D.J, Winner D.A. (2009) Effect of climate change on air quality, Atmopsheric Environment, 43, p. 51–63.CrossRefGoogle Scholar
  30. Krueger, B. E. Katragkou, I. Tegoulias, P. Zanis, D. Melas, E. Coppola, S. Rauscher, P. Huszar, T. Halenka (2008) Regional photochemical model calculations for Europe concerning ozone levels in a changing climate, Quarterly Journal of the Hungarian Meterological Service, 112, 3–4. Google Scholar
  31. Anteplioğlu U (2000). Modeling of surface ozone with UAM: a case study for Istanbul’, Ph.D. Thesis, Istanbul Technical University.Google Scholar
  32. Anteplioğlu, Topçu S., İncecik S. (2003) An Application of a photochemical model for urban airshed in İstanbul, Journal of Water, Air & Soil Pollution: Focus, 3; 53–64.Google Scholar
  33. Anteplioğlu, U, S. İncecik, S. Topçu, 2003, Model study with MM5 and CAMx in Istanbul area during high ozone days, (invited paper) International Symposium on Clean Environment, 21–22 November, Cheonan, Korea, 11–15, Nov. 2003Google Scholar
  34. Byun D.W and Ching J.K.S. (1999). Science Algorithms of the EPA Models-3CMAQ Modeling System. Washington, DC. USEPA.Google Scholar
  35. Im U Tayanç M Yenigün O (2006) Analysis of Major Photochemical Pollutants with Meteorological Factors for High Ozone Days in Istanbul, Turkey. Water, Air, and Soil Pollution, 175; 335–359.CrossRefGoogle Scholar
  36. Im U Tayanç M Yenigün O (2008) Interaction patterns of major photochemical pollutants in Istanbul, Turkey. Atmospheric Research. 89; 382–390.CrossRefGoogle Scholar
  37. Topçu S., Kahya c., İncecik S., Ercan S. G., Basar U. G. 2005. Review of surface ozone and its precursors in urban atmosphere of Istanbul, Turkey for 2002–2003. Proceedings of Air Quality Management at Urban, Regional and Global Scales, Volume 3, 1083–1093.Google Scholar
  38. Visschedijk, A.J.H., Zandveld, P.Y.J., Denier van der Gon, H.A.C.A., 2007. High Resolution Gridded European Emission Database for the EU Integrate Project GEMS, TNO-report 2007-A-R0233/B.Google Scholar
  39. Gryning, S.-E.; Batchvarova, E., Strengths/weaknesses of laboratory/field and numerical data. In: Proceedings. International workshop on quality assurance of microscale meteorological models, Hamburg (DE), 28–29 Jul 2005. Schatzmann, M.; Britter, R. (eds.), (European Science Foundation, Brussels, 2005) p. 85–93.Google Scholar
  40. Gryning S.-E. and Batchvarova E. 2009 Measuring Meteorology in Urban Areas – Some progress and many problems In proceedings: Meteorological and Air Quality Models for Urban Areas. Exeter (UK) May 3–4 2007. Baklanov, A., Grimmond, S., Mahura, A. and Athanassiadou, M., Springer, Dordrecht, Heidelberg, London, New York.Google Scholar
  41. Sreenivasan K.R., Chambers A.J. and R.A. Antonia, 1978: Accuracy of moments of velocity and scalar fluctuations in the atmospheric surface layer, Boundary-Layer Meteorology, 14, 341–359.CrossRefGoogle Scholar
  42. Stern R., Builtjes P., Schaap M., Timmermans R., Vautard R., Hodzic A., Memmesheimer M., Feldmann H., Renner E., Wolke, R., Kerschbaumer A. 2008. A model inter-comparison study focussing on episodes with elevated PM10 concentrations, Atmos. Env., 42, 4567–4588.CrossRefGoogle Scholar
  43. Tennekes H. and Lumley J.L. 1972. A first course in turbulence. MIT Press, Cambridge, Mass. 300 pp.Google Scholar
  44. Gilliland, A.B., R.L. Dennis, S.J. Roselle, T.E. Pierce, 2003: Seasonal NH3 emission estimates for the Eastern United States using ammonium wet concentrations and an inverse modeling method. J. Geophys. Res.-Atmos., 108, doi:  10.1029/2002JD003063.
  45. Pinder, R.W., R.C. Gilliam, K.W. Appel, S.L. Napelenok, K.M. Foley, A.B. Gilliland, 2009: Efficient probabilistic estimates of surface ozone concentration using an ensemble of model configurations and direct sensitivity calculations. Environ. Sci. Technol., 43, 2388–2393.CrossRefGoogle Scholar
  46. Baklanov, A., Korsholm, U.: On-line integrated meteorological and chemical transport modelling: advantages and prospectives. In: Proc. 29 th ITM on Air Pollution Modelling and its Application. Aveiro. Portugal.Google Scholar
  47. Borrego, C. et al., 2009 Estimation of modelling uncertainty according to the EU air quality legislation: the Air4EU Berlin case, submitted Atm. Env.Google Scholar
  48. Boylan, J.W., A.G. Russel, 2006. PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models. Atm.Env. 40, 4947–4957Google Scholar
  49. Carmichael, G.R et al., 2007 Predicting air quality: current status and future direction. . Proc. 29 th ITM on Air Pollution Modelling and its Application, Aveiro, Portugal.Google Scholar
  50. Delle Monache, L and R.B. Stull, 2003. A comparison of regional oxidant model output with observed ozone data. Atm.Env.37, 3469–3474CrossRefGoogle Scholar
  51. Denby,B, et al., 2008. Comparison of two data assimilation methods for assessing PM10 exceedances on the European scale.Accepted for publication Atm.Env.Google Scholar
  52. Grell, G.A. et al., 2005 Fully coupled “online” chemistry within the WRF model. Atm.Env. 39 ( 37), 6957–6975CrossRefGoogle Scholar
  53. Hanna S.R., G.E. Moore, M.E. Frenau, 1996 Evaulation of photochemical grid models using data from the Lake Michigan Ozone Study. Atm. Env. 30, 9, 3265–3279CrossRefGoogle Scholar
  54. Hass, H et al., 1997 Comparison of model results obtained with several European regional air quality models. Atm.Env. 31, 19, 3259–3279CrossRefGoogle Scholar
  55. Hass, H. et al., 2003 Results and intercomparison from the European regional scale modelling systems-Aerosol modelling, EUROTRAC-ISS Rep.Google Scholar
  56. Loon, M. van et al., 2004 Model intercomparison in the framework of the review of the unified EMEP-model. TNO-Rep. R2004/282Google Scholar
  57. Loon, M et al., 2007 Evaluation of long term ozone simulations from seven regional scale air quality models and their ensemble average. Atm.Env. 41, 2083–2097CrossRefGoogle Scholar
  58. Meij, A. de, et al., 2009 The impact of MM5 and WRF meteorology over complex terrain on CHIMERE model calculations. Accepted for publication ACP.Google Scholar
  59. McKeen, S.A, et al., 2005 Assesment of an ensemble of seven real-time ozone forecasts over eastern North America during the summer of 2005. J.of Geoph. Res. 110 ( D21), D21307CrossRefGoogle Scholar
  60. Roemer, M. et al., 2003 Ozone trends according to ten different dispersion models. EUROTRAC-ISS Rep.Google Scholar
  61. Sartelet, K.N. et al., 2007. Simulation of aerosols abd gas-phase species over Europe with the Polyphemus system, Part 1-Model-to-data comparison for 2001. Atm.Env. 41, 6111–6118Google Scholar
  62. Stern, R.M. et al., 2008. A model intercomparison study focussing on episodes with elevated PM 10 concentrations. Atm.Env.  doi:10.1016/j.atmosenv.2008.01.068.
  63. Vautard, R. et al.: Skill and uncertainty of a regional air quality model ensemble. Accepted for publication, Atm.Env. (2008)Google Scholar
  64. Berri G.J. and M.N. Nuñez (1993) Transformed shoreline–following horizontal coordinates in a mesoescale model: A sea–land breeze case study, J. Appl. Meteorol., 5, 918–928 pp.CrossRefGoogle Scholar
  65. Berri G.J. (2007) Using a mesoscale boundary layer model forced with local observations to define the low-level wind field climatology over the La Plata River region, II Encontro Meteorologia Sul do Brasil, Florianopolis, Brasil, June 2007.Google Scholar
  66. Sraibman L. and G.J. Berri (2009) Low level wind forecast over La Plata River region with a mesoscale boundary layer model forced by regional operational forecasts, Boundary Layer Meteorology, 130, 3, 407–422, DOI 10.1007/s10546-009-9350-1CrossRefGoogle Scholar
  67. Hurley, P.: TAPM V4. Part 1: Technical Description. CSIRO Marine and Atmospheric Research Paper 25. ISBN 978-1-921424-71-7 (2008)Google Scholar
  68. Kossman, M., Sturman, A.P.: The surface wind field during winter smog nights in Christchurch and coastal Canterbury, New Zealand. International Journal of Climatology 24, 93–108 (2004)CrossRefGoogle Scholar
  69. Scire, J.S., Robe, F.R., Fernau, M.E., Yamartino, R.J.: A User’s Guide for the CALMET Meteorological Model (V5). Earth Tech, Inc., Concord, MA (1998)Google Scholar
  70. Smithson, J.: Inventory of emissions to air in Christchurch, 2006. Environment Canterbury Technical Report R08/70. ISBN 978-1-86937-885-1 (2008)Google Scholar
  71. Bucsela EJ, Celarier EA, Wenig MO, Gleason JF, Veefkind JP, Boersma KF, Brinksma EJ (2006) Algorithm for NO2 vertical column retrieval from the ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing 44:1245–1258.CrossRefGoogle Scholar
  72. Chinkin LR, Coe DL, Funk TH, Hafner HR, Roberts PT, Ryan PA (2003) Weekday versus weekend activity patterns for ozone precursor emissions in California’s South Coast air basin. Air & Waste Manage. Assoc. 53:829–843.Google Scholar
  73. Harley RA, Marr LC, Lehner JK, Giddings SN (2005) Changes in motor vehicle emissions on diurnal to decadal time scales and effects on atmospheric composition. Environ. Sci. Technol. 39:5356–5362.CrossRefGoogle Scholar
  74. Janssen et al. (1999) Weekday and weekend day temporal allocation of activity in the NONROAD model. Report prepared for the U.S. Environmental Protection Agency, Office of Mobile Sources by Nonroad Engine Emission Modeling Team, NR-015.Google Scholar
  75. Bloomfield, P. 2000. Fourier Analysis of Time Series: An Introduction. Wiley-Interscience; 2nd ed.Google Scholar
  76. CASTNET. 2006. Annual Report. prepared by MACTEC Engineering and Consulting, Inc. for the USEPA Clean Air Markets Division, Washington, D.C.Google Scholar
  77. Hogrefe, C., Lynn, B., Goldberg, R., Rosenzweig, C., Zalewsky, E., Hao, W., Doraiswamy, P., Civerolo K., Ku, J., Sistla, G., and P.L. Kinney. 2009. A combined model–observation approach to estimate historic gridded fields of PM2.5 mass and species concentrations. Atmospheric Environment 43: 2561–2570CrossRefGoogle Scholar
  78. Rao, S.T., and I.G. Zurbenko. 1994. “Detecting and tracking changes ozone air Quality”, J. Air & Waste Manage. Assoc., 44: 1089Google Scholar
  79. Zurbenko, I.G. 1986. The Spectral Analysis of Time Series. North HollandGoogle Scholar
  80. Zurbenko I., Porter P.S. 1998. Construction of high resolution wavelets, IEEE Journal of Signal Processing, vol. 65, pp. 315–327.Google Scholar
  81. Bell ML, Hobbs BF, et al. (2005) Metrics matter: Conflicting air quality rankings from different indices of air pollution, J Air Waste Manage, 55(1), 97–106.Google Scholar
  82. Bell ML, Peng RD, et al. (2006) The exposure-response curve for ozone and risk of mortality and the adequacy of current ozone regulations, Environ. Health Perspect., 114(4), 532–536.CrossRefGoogle Scholar
  83. Byun DW, and Schere KL (2006) Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality modeling system, Applied Mechanics Review, 59, 51–77.CrossRefGoogle Scholar
  84. Chestnut LG, Mills DM, et al. (2006) Cost-benefit analysis in the selection of efficient multipollutant strategies, J Air Waste Manage, 56(4), 530–536.Google Scholar
  85. Cohan DS, Boylan JW, et al. (2007) An integrated framework for multipollutant air quality management and its application in Georgia, Environ Manage, 40(4), 545–554.CrossRefGoogle Scholar
  86. Dunker AM (1984) The decoupled direct method for calculating sensitivity coefficients in chemical kinetics, J. Chem. Phys., 81(5), 2385–2393.CrossRefGoogle Scholar
  87. Morris RE, Koo B, et al. (2007) Technical Support Document for VISTAS Emissions and Air Quality Modeling to Support Regional Haze SIPs, 244 pp.Google Scholar
  88. Stedman JR, and Kent AJ (2008) An analysis of the spatial patterns of human health related surface ozone metrics across the UK in 1995, 2003 and 2005, Atmos Environ, 42(8), 1702–1716.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • T. Iversen
    • 1
  • S.-E. Gryning
    • 2
  • R. Jones
  • S. Galmarini
    • 3
  1. 1.Norwegian Met. InstOsloNorway
  2. 2.Wind Energy DivisionRisoe DTURoskildeDenmark
  3. 3.European Commission Joint Research CenterIspraVarese Italy

Personalised recommendations