Skip to main content

Osmotrophic Biofilms: From Modern to Ancient

  • Chapter
  • First Online:

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 14))

Abstract

We here explore the potential of nonphotosynthetic microbes as significant players in the formation and preservation of structures such as microbial mats and soil-like networks. In particular, we focus on organisms such as actinobacteria and fungi, known to feed by osmotic absorption of preformed organic compounds, which we collectively refer to as “osmotrophs” here. We show that they have a fossil record that may be traced far back into the Proterozoic in a range of sedimentary environments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allwood, A.C., Walter, M.R., Kamber, B.S., Marshall, C.P. and Burch, I.W. (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 441: 714–718.

    Article  PubMed  CAS  Google Scholar 

  • Ascaso, C., Wierzchos, J., Speranza, M., Gutiérrez, J.C., Martín-González, A., De Los Rios, A. and Alonso, J. (2005) Fossil protists and fungi in amber and rock substrates. Micropaleontology 51: 59–72.

    Google Scholar 

  • Barton, H.A. and Northup, D.E. (2007) Geomicrobiology in cave environments: past, current and future perspectives. J. Cave Karst Stud. 69: 163–178.

    Google Scholar 

  • Boston, P.J., Spilde, M.N., Northup, D.E., Melim, L.A., Soroka, D.S., Kleina, L.G., Lavoie, K.H., Hose, L.D., Mallory, L.M., Dahm, C.N., Crossey, L.J. and Schelble, R.T. (2001) Cave biosignature suites: microbes, minerals, and Mars. Astrobiology 1: 25–55.

    Article  PubMed  CAS  Google Scholar 

  • Boynton, H.E. and Ford, T.D. (1995). Ediacaran fossils from the Precambrian (Charnian supergroup) of Charnwood Forest, Leicestershire, England. Mercian Geologist 13: 165–182.

    Google Scholar 

  • Brasier, M.D. (2009) Darwin’s Lost World. The Hidden History of Animal Life. Oxford University Press, Oxford.

    Google Scholar 

  • Brasier, M.D. and Callow, R.H.T. (2007) Changes in the patterns of phosphatic preservation across the Proterozoic–Cambrian transition. Mem. Assoc. Austral. Palaeontol. 34: 377–389.

    Google Scholar 

  • Brasier, M.D., Cotton, L. and Yenney, I. (2010). First report of amber with spider web and microbial inclusions from the earliest Cretaceous (∼140 Ma) of Hastings, Sussex. J. Geol. Soc. London. (in press)

    Google Scholar 

  • Breton, G. (2007). La bioaccumulation de microorganismes dans l’ambre: analyse comparée d’un ambre cénomanien et d’un ambre sparnacien, et de leurs tapis algaires et bactériens. C. R. Palevol. 6: 125–133.

    Article  Google Scholar 

  • Butterfield, N.J. (2005). Probable Proterozoic fungi. Paleobiology 31: 165–182.

    Article  Google Scholar 

  • Callow, R.H.T. and Brasier, M.D. (2009) A solution to Darwin’s dilemma of 1859: exceptional preservation in Salter’s material from the late Ediacaran Longmyndian Supergroup, England. J. Geol. Soc. London 166: 1–4.

    Article  Google Scholar 

  • Campbell, B.J., Engel, A.S., Porter, M.L. and Takai, K. (2006) The versatile ε-proteobacteria: key players in sulphidic habitats. Nature 4: 458–468.

    CAS  Google Scholar 

  • Cañaveras, J.C., Sanchez-Moral, S., Soler, V. and Saiz-Jimenez, C. (2001) Microorganisms and microbially induced fabrics in cave walls. Geomicrobiol. J. 18: 223–240.

    Article  Google Scholar 

  • Cañaveras, J.C., Cuezva, S., Sanchez-Moral, S., Lario, J., Laiz, L., Gonzalez, J.M. and Saiz-Jimenez, C. (2006) On the origin of fiber calcite crystals in moonmilk deposits. Naturwissenschaften 93: 27–32.

    Article  PubMed  Google Scholar 

  • Costerton, J.W. and Stoodley, P. (2003) Microbial biofilms: protective niches in ancient and modern geomicrobiology, In: W.E. Krumbein, D.M. Paterson and G.A. Zavarzin (eds.) Fossil and Recent Biofilms. Kluwer, Dordrecht, pp. xv–xxi.

    Google Scholar 

  • Cunningham, K.L., Northup, D.E., Pollastro, R.M., Wright, W.G. and Larock, E.J. (1995) Bacteria, fungi and biokarst in Luchuguilla Cave, Carlsbad Caverns National Park, New Mexico. Environ. Geol. 25: 2–8

    Article  Google Scholar 

  • Davis, D.G. (2000) Extraordinary features of Lechuguilla Cave, Guadalupe Mountains, New Mexico. J. Cave Karst Stud. 62: 147–157.

    CAS  Google Scholar 

  • Dorfelt, H. and Schmidt, A.R. (2005) A fossil Aspergillus from Baltic amber. Mycol. Res. 109: 956–960.

    Article  PubMed  Google Scholar 

  • Duane, M.J. (2003) Unusual preservation of crustaceans and microbial colonies in a vadose zone, northwest Morocco. Lethaia 36: 21–32.

    Article  Google Scholar 

  • Dupont, J., Jacquet, C., Dennetiérre, B., Lacoste, S., Bousta, F., Orial, G., Cruard, C., Couloux, A. and Roquebert, M. (2007) Invasion of the French Paleolithic painted cave of Lascaux by members of the Fusarium solani species complex. Mycologia 99: 526–533.

    Article  PubMed  CAS  Google Scholar 

  • Dzik, J. (2003) Anatomical information content in the Ediacaran fossils and their possible zoological affinities. Integr. Comp. Biol. 43: 114–126.

    Article  PubMed  Google Scholar 

  • Egemeier, S.J. (1981) Cavern development by thermal waters. Nat. Speleol. Soc. Bull. 43: 31–51.

    CAS  Google Scholar 

  • Engel, A.S. (2007) Observations on the biodiversity of sulfidic karst habitats. J. Cave Karst Stud. 69: 187–206.

    CAS  Google Scholar 

  • Engel, A.S., Porter, M.L., Stern, L.A., Quinlan, S. and Bennett, P.C. (2004a) Bacterial diversity and ecosystem function of filamentous microbial mats from aphotic (cave) sulfidic springs dominated by chemolithoautotrophic “Epsilonproteobacteria”. FEMS Microbiol. Ecol. 51: 31–53.

    Article  PubMed  CAS  Google Scholar 

  • Engel, A.S., Stern, L.A. and Bennett, P.C. (2004b) Microbial contributions to cave formation: new insights into sulfuric acid speleogenesis. Geology 32: 369–372.

    Article  CAS  Google Scholar 

  • Gehling, J.G. (1999) Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios 14: 40–57.

    Article  Google Scholar 

  • Golubic, S. and Schneider, J. (2003) Microbial endoliths as internal biofilms, In: W.E. Krumbein, D.M. Paterson and G.A. Zavarzin (eds.) Fossil and Recent Biofilms. Kluwer, Dordrecht, pp. 249–264.

    Google Scholar 

  • Grotzinger, J.P. and Knoll, A.H. (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu. Rev. Earth Planet. Sci. 27: 313–358.

    Article  PubMed  CAS  Google Scholar 

  • Heckman, D.S., Geiser, D.M., Eidell, B.R., Stauffer, R.L., Kardos, N.L. and Hedges, S.B. (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293: 1129–1133.

    Article  PubMed  CAS  Google Scholar 

  • Hose, L.D. and Pisarowicz, J.A. (1999) Cueva de Villa Luz, Tabasco, Mexico: reconnaissance study of an active sulfur spring cave and ecosystem. J Cave Karst Stud. 61: 13–21.

    CAS  Google Scholar 

  • Hose, L.D., Palmer, A.N., Palmer, M.V., Northup, D.E., Boston, P.J. and Duchene, H.R. (2000) Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment. Chem. Geol. 169: 399–423.

    Article  CAS  Google Scholar 

  • Jagnow, D.H., Hill, C.A., Davis, D.G., Duchene, H.R., Cunningham, K.I., Northup, D.E. and Queen, J.M. (2000) History of the sulfuric acid theory of speleogenesis in the Guadalupe Mountains, New Mexico. J. Cave Karst Stud. 62: 54–59.

    CAS  Google Scholar 

  • Jannasch, H.W. (1985) The chemosynthetic support of life and the microbial diversity at deep-sea hydrothermal vents. Proc. Roy. Soc. London B 225: 277–297.

    Article  Google Scholar 

  • Karl, D.M., Wirsen, C.O. and Jannasch, H.W. (1980) Deep-sea primary production at the Galapagos hydrothermal vents. Science 207: 1345–1347.

    CAS  Google Scholar 

  • Kinkle, B.K. and Kane, T.C. (2000) Chemolithoautotrophic microorganisms and their potential role in subsurface environments, In: H. Wilkens, D. Culver and W.F. Humphreys (eds.) Ecosystems of the World: Subterranean Ecosystems. Elsevier, Amsterdam, pp. 309–318.

    Google Scholar 

  • Kretzschmar, M. (1982) Fossile Pilze in Eisen-Stromatolithen von Warstein (Rheinisches Schiefergebirge). Facies 7: 237–260.

    Article  Google Scholar 

  • Hose, L.D. and Pisarowicz, J.A. (1999) Cueva de Villa Luz, Tabasco, Mexico: reconnaissance study of an active sulfur spring cave and ecosystem. J. Cave Karst Stud. 61: 13–21.

    CAS  Google Scholar 

  • Krumbein, W.E., Paterson, D.M. and Zavarzin, G.A. (eds.) (2003) Fossil and Recent Biofilms. Kluwer, Dordrecht, 482 pp.

    Google Scholar 

  • Lascu, C., Popa, R., Sarbu, S.M., Vlasceanu, L. and Prodan, S. (1993) La grotte de Movile: une faune hors du temps. La Réchérche 258: 1092–1098.

    Google Scholar 

  • Lecointre, G. and Guyader, H.L. (2006) The Tree of Life. Belknap Press, Harvard, 560 pp.

    Google Scholar 

  • Levin, L.A. (2005) Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. Oceanogr. Mar. Biol. Annu. Rev. 43: 1–46.

    Article  Google Scholar 

  • Liu, A.G., McIlroy, D., Antcliffe, J.B. and Brasier, M.D. (2010) Post-mortem decay of the Avalonian Ediacara biota and its implications for the early fossil record (in press).

    Google Scholar 

  • Macaladay, J.L., Jones, D.S. and Lyon, E.H. (2007) Extremely acidic, pendulous cave wall biofilms from the Frasassi cave system, Italy. Environ. Microbiol. 9: 1402–1414.

    Article  Google Scholar 

  • Margulis, L. and Schwartz, K.V. (1988) The Five Kingdoms. W.H. Freeman, New York.

    Google Scholar 

  • Martín-González, A., Wierzchos, J., Gutiérrez, J.C., Alonso, J. and Ascaso, C. (2009) Microbial Cretaceous park: biodiversity of microbial fossils entrapped in amber. Naturwissenschaften 96: 551–564.

    Article  PubMed  Google Scholar 

  • Mattison, R.G., Abbiati, M., Dando, P.R., Fitzsimons, M.F., Pratt, S.M., Southward, A.J. and Southward, E.C. (1998) Chemoautotrophic microbial mats in submarine caves with hydrothermal sulphidic springs at Cape Palinuro, Italy. Microb. Ecol. 35: 58–71.

    Article  PubMed  CAS  Google Scholar 

  • McIlroy, D., Crimes, T.P. and Pauley, J.C. (2005) Fossils and matgrounds from the Neoproterozoic Longmyndian Supergroup, Shropshire, UK. Geol. Mag. 142: 441–455.

    Article  Google Scholar 

  • Narbonne, G.M., Dalrymple, R.W., LaFlamme, M., Gehling, J.G. and Boyce, W.D. (2005) Life After Snowball: Mistaken Point Biota and the Cambrian of the Avalon. North American Paleontological Convention Field Trip Guidebook, Halifax, Nova Scotia.

    Google Scholar 

  • Néraudeau, D., Perrichot, V., Colin, J.-P., Girard, V., Gomez, B., Guillocheau, F., Masure, E., Peyrot, D., Tostain, F., Videt, B. and Vullo, R. (2008) A new amber deposit from the Cretaceous (uppermost Albian-lowermost Cenomanian) of southwestern France. Cretaceous Res. 29: 925–929.

    Article  Google Scholar 

  • Neu, T.R., Eitner, A. and Paje, M.L. (2003) Development and architecture of complex environmental biofilms – lotic biofilm systems, In: W.E. Krumbein, D.M. Paterson and G.A. Zavarzin (eds.) Fossil and Recent Biofilms. Kluwer, Dordrecht, pp. 29–45.

    Google Scholar 

  • Noffke, N., Gerdes, G., Klenke, T. and Krumbein, W.E. (2001) Microbially induced sedimentary structures – a new category within the classification of primary sedimentary structures. J. Sed. Res. 7: 649–656.

    Article  Google Scholar 

  • Noffke, N., Eriksson, K.A., Hazen, R.M. and Simpson, E.L. (2006) A new window into Early Archean life: Microbial mats in Earth’s oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology 34: 253–256.

    Article  CAS  Google Scholar 

  • Northup, D.E. and Lavoie, K.H. (2001) Geomicrobiology of caves: a review. Geomicrobiol. J. 18: 199–222.

    Article  CAS  Google Scholar 

  • Peat, C. (1984) Precambrian microfossils from the Longmyndian of Shropshire. Proc. Geol. Assoc. 5: 17–22.

    Article  Google Scholar 

  • Poinar, G.O. and Milki, R. (2001) Lebanese Amber: The Oldest Insect Ecosystem in Fossilized Resin. Oregon State University Press, Corvallis, OR.

    Google Scholar 

  • Porter, M.L., Engel, A.S., Kane, T.C. and Kinkle, B.K. (2009) Productivity–diversity relationships from chemolithoautotrophically based sulfidic karst systems. Int. J. Speleol. 38: 27–40.

    Article  Google Scholar 

  • Poulson, T.L. and Lavoie, K.H. (2000) The trophic basis of subsurface ecosystems, In: H. Wilkens, D.C. Culver and W.F. Humphreys (eds.) Ecosystems of the World: Subterranean Ecosystems. Elsevier, Amsterdam, pp. 231–249.

    Google Scholar 

  • Preat, A., Kolo, K., Mamet, B., Gorbushina, A.A. and Gillian, D.C. (2003) Fossil and subrecent fungal communities in three calcrete series from the Devonian Canadian Rocky Mountains, Carboniferous of northern France and Cretaceous of central Italy, In: W.E. Krumbein, D.M. Paterson and G.A. Zavarzin (eds.) Fossil and Recent Biofilms. Kluwer, Dordrecht, pp. 291–306.

    Google Scholar 

  • Rasmussen, B. (2000) Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature 405: 676–679.

    Article  PubMed  CAS  Google Scholar 

  • Reitner, J., Schumann, G. and Pedersen, K. (2006) Fungi in biogeochemical cycles, In: G.M. Gadd (ed.) Fungi in Biogeochemical Cycles. Cambridge University Press, Cambridge, pp. 377–403.

    Chapter  Google Scholar 

  • Ross, I.K. (2006) Fungal lives, In: J. Seckbach (ed.) Life as We Know It. Springer, Dordrecht, pp. 55–73.

    Google Scholar 

  • Sarbu, S.M., Vlasceanu, L., Popa, R., Sheridan, P., Kinkle, B.K. and Kane, T.C. (1994) Microbial mats in a thermomineral sulfurous cave, In: L.J. Stal and P. Caumette (eds.) Microbial Mats: Structure, Development, and Environmental Significance. Springer, Berlin, pp. 45–50.

    Chapter  Google Scholar 

  • Schieber, J., Bose, P.K., Eriksson, P.G., Banerjee, S., Sarkar, S., Altermann, W. and Catuneanu, O. (eds.) (2007) Atlas of Microbial Mat Features Preserved Within the Siliciclastic Rock Record. Elsevier, Amsterdam, 311 pp.

    Google Scholar 

  • Schmidt, A.R. and Dorfelt, H. (2007) Evidence of Cenozoic Matoniaceae from Baltic and Bitterfeld amber. Rev. Palaeobot. Palynol. 144: 145–156.

    Article  Google Scholar 

  • Schmidt, A.R. and Schäfer, U. (2005) Leptotrichites resinatus new genus and species, a fossil sheathed bacterium in alpine Cretaceous amber. J. Paleontol. 79: 175–184.

    Article  Google Scholar 

  • Schmidt, A.R., Ragazzi, E., Coppellotti, O. and Roghi, G. (2006) A microworld in Triassic amber. Nature 444: 835.

    Article  PubMed  CAS  Google Scholar 

  • Schopf, J.W. and Klein, C. (1992) The Proterozoic Biosphere. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Schopf, J.W., Zhu, W.-Q., Xu, Z.-L. and Hse, J. (1984) Proterozoic stromatolitic mmicrobiotas of the 1400–1500 Ma-old Gaoyuzhuang formation near Jixian, northern China. Precambrian Res. 24: 335–349.

    Article  PubMed  CAS  Google Scholar 

  • Stolz, J.F. (2003) Structure of marine biofilms – flat laminated mats and modern marine stromatolites, In: W.E. Krumbein, D.M. Paterson and G.A. Zavarzin (eds.) Fossil and Recent Biofilms. Kluwer, Dordrecht, pp. 65–76.

    Google Scholar 

  • Trewin, N.H. and Rice, C.M. (eds.) (2004) The Rhynie hot-spring system: geology, biota and mineralization. Trans. R. Soc. Edinb. Earth Sci. 94, 239 pp.

    Google Scholar 

  • Varnam, A.H. and Evans, M.G. (2000) Environmental Microbiology. Manson Publishing, London, 160 pp.

    Google Scholar 

  • Verrecchia, E.P. and Verrecchia, K.E. (1994) Needle-fiber calcite: a critical review and proposed classification. J. Sed. Res. A64: 650–664.

    Google Scholar 

  • Verrecchia, E.P., Loisy, C., Braissant, O. and Gorbushina, A.A. (2003) The role of fungal biofilm and networks in the terrestrial calcium carbonate cycle, In: W.E. Krumbein, D.M. Paterson and G.A. Zavarzin (eds.) Fossil and Recent Biofilms. Kluwer, Dordrecht, pp. 363–369.

    Google Scholar 

  • Viles, H.A. (1984) Biokarst. Review and prospect. Prog. Phys. Geogr. 8: 532–542.

    Article  Google Scholar 

  • Vlasceanu, L., Sarbu, S.M., Engel, A.S. and Kinkle, B.K. (2000) Acidic cave-wall biofilms located in the Frasassi Gorge, Italy. Geomicrobiol. J. 17: 125–139.

    Article  CAS  Google Scholar 

  • Went, F.W. (1969) Fungi associated with stalactite growth. Science 166: 385–386.

    Article  PubMed  CAS  Google Scholar 

  • Wood, D.A., Dalrymple, R.W., Narbonne, G.M., Gehling, J.G. and Clapham, M.E. (2003) Paleoenvironmental analysis of the late Neoproterozoic Mistaken Point and Trepassey formations, southeastern Newfoundland. Can. J. Earth Sci. 40: 1375–1391.

    Article  Google Scholar 

  • Yuan, X., Xiao, S. and Taylor, T.N. (2005) Lichen-like symbiosis 600 million years ago. Science 308: 1017–1020.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the help and advice of Ian Yenney, Lynn Margulis, Duncan McIlroy, Alexander Schmidt, and Owen Green.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin D. Brasier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Brasier, M.D., Callow, R.H.T., Menon, L.R., Liu, A.G. (2010). Osmotrophic Biofilms: From Modern to Ancient. In: Seckbach, J., Oren, A. (eds) Microbial Mats. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3799-2_7

Download citation

Publish with us

Policies and ethics