Gunflint Chert Microbiota Revisited – Neither Stromatolites, Nor Cyanobacteria

  • Wolfgang E. Krumbein
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 14)


Silica-embedded microfossils of the Gunflint Chert (1,800 million years BP) are compared to similar systems in Western Australia, the Jurassic of Switzerland and France, the Tertiary of Warstein, Germany, and to laboratory culture experiments with iron and manganese depositing fungi-exhibiting characteristics of ‘Metallogenium symbioticum’, Eoastreon, Kakabekia and other characteristic Gunflint fossils. A comparative analysis allows the following conclusions: (1) The Gunflint Chert does not represent ancient stromatolites. (2) They are iron- and silica-depositing decay environments, with fungi as active mineralisation partners. The fungal elements were embedded and fossilised selectively by repeated invasions of hot brines rich in dissolved silica. Similar deposits are known worldwide through earth history. Many jasper, agate and chert deposits, as well as silicified wood represent fungal saprophytic decay environments. (3) Fungi are the main microbial components, sometimes associated with filamentous iron bacteria. Both fungal fragments, including sclerotia and spore-like compounds, and filamentous iron bacteria can easily be confused with cyanobacterial remains typical for ‘true stromatolites’. In most cases studied from Precambrian to laboratory materials, only 1–3% of the original fungal body is fossilised. The fungal nature of the Gunflint flora as well as the Jurassic and tertiary decay systems may thus be partially hidden and is open to misinterpretation. Branching sections and elongate thin hyphae of fungal colonies usually do not deposit mineral coatings and are, therefore, usually not preserved in the fossil record. The fungal origin of the Gunflint Chert fossils may thus remain debated.


Thermal Water Banded Iron Formation Fungal Origin Phototroph Microorganism Decay System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Barghoorn, E.S. and Tyler, S.A. (1965) Microorganisms from the Gunflint Chert. Science 147: 563–577.PubMedCrossRefGoogle Scholar
  2. Brehm, U., Krumbein, W.E. and Palinska, K.A. (2006) Biomicrospheres generate ooids in the laboratory. Geomicrobiol. J. 23: 545–550.CrossRefGoogle Scholar
  3. Bruns, T. (2006) Evolutionary biology: a kingdom revised. Nature 443: 758–761.PubMedCrossRefGoogle Scholar
  4. Cloud, P.E. (1965) Significance of the Gunflint (Precambrian) microflora. Science 148: 27–35.PubMedCrossRefGoogle Scholar
  5. Dahanayake, K. and Krumbein, W.E. (1986) Microbial structures in oolitic iron formations: miner. Deposita 21: 85–94.Google Scholar
  6. Dahanayake, K., Gerdes, G. and Krumbein, W.E. (1985) Stromatolites, oncolites and oolites biogenically formed in situ. Naturwissenschaften 72: 513–518.CrossRefGoogle Scholar
  7. Dexter-Dyer, B., Kretzschmar, M. and Krumbein, W.E. (1984) Possible microbial pathways playing a role in the formation of Precambrian ore deposits. J. Geol. Soc. 141: 251–262.CrossRefGoogle Scholar
  8. Doolittle, W.F. (1980) Revolutionary concepts in evolutionary cell biology. Trends Biochem. Sci., June, 146–149 (quoted from Dyer, B.D. and Obar, R. (1985) The Origin of Eukaryotic Cells. Benchmark papers in systematic and evolutionary biology. Van Nostrand Reynold, New York, 347 pp.)Google Scholar
  9. Doolittle, W.F., Feng, D.-F., Tsang, S., Cho, G. and Little, E. (1996) Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271: 470–477.PubMedCrossRefGoogle Scholar
  10. Dyer, B.D. and Obar, R. (1985) The Origin of Eukaryotic Cells. Benchmark papers in systematic and evolutionary biology. Van Nostrand Reinhold, New York, 347 pp.Google Scholar
  11. Embley, T.M. and Martin, W. (2006) Eukaryotic evolution, changes and challenges. Nature 440: 623–630.PubMedCrossRefGoogle Scholar
  12. Eppard, M., Krumbein, W.E., Koch, C., Rhiel, E., Staley, J. and Stackebrandt, E. (1996) Morphological, physiological and molecular biological investigation on new isolates similar to the genus Geodermatophilus (Actinomycetes). Arch. Microbiol. 166: 12–22.PubMedCrossRefGoogle Scholar
  13. Gerdes, G. and Krumbein, W.E. (1987) Biolaminated Deposits. Springer, Berlin, 183 pp.CrossRefGoogle Scholar
  14. Gorbushina, A.A. (2007) Life on the rocks. Environ. Microbiol. 9: 1613–1631.PubMedCrossRefGoogle Scholar
  15. Hass, H., Taylor, T.N. and Remy, W. (1994) Fungi from the Lower Devonian Rhynie chert: mycoparasitism. Am. J. Bot. 81: 29–37.CrossRefGoogle Scholar
  16. Heckman, D.S., Geiser, D.M., Eidell, B.R., Stauffer, R.L., Kardos, N.L. and Hedges, S.B. (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293: 1129–1133.PubMedCrossRefGoogle Scholar
  17. James, T.Y., Kauff, F., Schoch, C.L., Matheny, B., Hofstetter, V., Cox, C.J., Gail Celio, G., Gueidan, C., Fraker, E., Miadlikowsky, J., Lumbsch, H.T., Rauhut, A., Reeb, V., Arnold, A.E., Amtoft, A., Stajich, J.E., Hosaka, K., Sung, G-H., Johnson, D., O’Rourke, B., Crockett, M., Binder, M., Curtis, J.M., Slot, J.C., Wang, Z., Wilson, A.W., Schüler, A., Longcore, J.E., O’Donnell, K., Mozley-Standridge, S., Porter, D., Letcher, P.M., Powell, M.J., Taylor, J.W., White, M.W., Griffith, G.W., Davies, D.R., Humber, R.A., Morton, J.B., Sugiyama, J., Rossman, A.Y., Rogers, J.D., Pfister, D.H., Hewitt, D., Hansen, K., Hambleton, S., Shoemaker, R.A., Kohlmeyer, J., Volkmann-Kohlmeyer, B., Spotts, R.A., Serdani, M., Crous, P.W., Hughes, K.W., Matsuura, K., Langer, E., Langer, G., Untereiner, W.A., Lücking, R., Büdel, B., Geiser, D.M., Aptroot, A., Diederich, P., Schmitt, I., Schultz, M., Yahr, R., Hibbett, D.S., Lutzoni, F., McLaughlin, D.J., Spatafora, J.W. and Vilgalys, R. (2006) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443: 818–822.PubMedCrossRefGoogle Scholar
  18. Jones, B. and Renaut, R.W. (2007) Selective mineralization of microbes in Fe-rich precipitates (jarosite, hydrous ferric oxides) from acid hot springs in the Waiotapu geothermal area, North Island, New Zealand. Sed. Geol. 194: 177–198.CrossRefGoogle Scholar
  19. Jones, B., Renaut, R.W. and Rosen, R. (2000) Stromatolites forming in acidic hot-spring waters, North Island, New Zealand. Palaios 15: 450–475.CrossRefGoogle Scholar
  20. Knoll A.H. (2004) Life on a Young Planet. Princeton University Press, Princeton, NJ, 227 pp.Google Scholar
  21. Knoll, A.H. and Barghoorn, E.S. (1976) A Gunflint-type microbiota from the Duck Creek dolomite, Western Australia. Orig. Life 7: 417–423.PubMedCrossRefGoogle Scholar
  22. Knoll, A.H. and Simonson, B. (1981) Early proterozoic microfossils and penecontemporaneous quartz cementation in the Sokoman Iron Formation, Canada. Science 211: 478–480.PubMedCrossRefGoogle Scholar
  23. Kollman, J.M. and Doolittle, R.F. (2000) Determining the relative rates of change for prokaryotic and eukaryotic proteins with anciently duplicated paralogs. J. Mol. Evol. 51: 173–181.PubMedGoogle Scholar
  24. Konhauser, K.O., Jones, B., Reysenbach, A.-L. and Renaut, R.W. (2004) Hot spring sinters: keys to understanding Earth’s earliest life forms. Can. J. Earth Sci. 40: 1713–1724.CrossRefGoogle Scholar
  25. Krumbein, W.E. (1983) Stromatolites – the challenge of a term in space and time. Precamb. Res. 20: 493–531.CrossRefGoogle Scholar
  26. Krumbein, W.E. (2008) Biogenerated rock structures. Space Sci. Rev. 135: 81–94.CrossRefGoogle Scholar
  27. Krumbein, W.E. and Cohen, Y. (1974) Biogene, klastische und evaporitische Sedimentation in einem mesothermen monomiktischen ufernahen See (Golf von Aqaba). Geol. Rdsch. 63: 1035–1065.CrossRefGoogle Scholar
  28. Krumbein, W.E. and Werner, D. (1983) The microbial silica cycle, In: W.E. Krumbein (ed.) Microbial Geochemistry. Blackwell, Oxford, pp. 125–157.Google Scholar
  29. Krumbein, W.E., Paterson, D.M. and Zavarzin, G.A. (2003) Fossil and Recent Biofilms – A Natural History of Life on Earth. Kluwer, Dordrecht, 482 pp.Google Scholar
  30. Lutzoni, F., Pagel, M. and Reeb, V. (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411: 937–940.PubMedCrossRefGoogle Scholar
  31. Lutzoni, F., Kauff, F., Cox, C.J., McLaughlin, D., Celio, G., Dentinger, B., Padamsee, M., Hibbett, D., James, T.Y., Baloch, E., Grube, M., Reeb, V., Hofstetter, V., Schoch, C., Arnold, A.E., Miadlikowska, J., Spatafora, J., Johnson, D., Hambleton, S., Crockett, M., Shoemaker, R., Hambleton, S., Crockett, M., Shoemaker, R., Sung, G.H., Lucking, R., Lumbsch, T., O’Donnell, K., Binder, M., Diederich, P., Ertz, D., Gueidan, C., Hansen, K., Harris, R.C., Hosaka, K., Lim, Y.W., Matheny, B., Nishida, H., Pfister, D., Rogers, J., Rossman, A., Schmitt, I., Sipman, H., Stone, J., Sugiyama, J., Yahr, R. and Vilgalys, R. (2004) Assembling the fungal tree of life: progress, classification and evolution of subcellular traits. Am. J. Bot. 91: 1446–1480.PubMedCrossRefGoogle Scholar
  32. Margulis, L., Maniotis, A., MacAllister, J., Scythes, J., Brorson, O., Hall, J., Krumbein, W.E. and Chapman, M.J. (2009) Spirochaete round bodies syphilis, Lyme disease & AIDS: resurgence of “the great imitator”? Symbiosis 47: 51–58.CrossRefGoogle Scholar
  33. Nursall, J.R. (1959) Oxygen as a prerequisite to the origin of the Metazoa. Nature 183: 1170–1172.CrossRefGoogle Scholar
  34. Redecker, D. (2002) New views on fungal evolution based on DNA markers and the fossil record [Review]. Res. Microbiol. 153: 125–130.PubMedCrossRefGoogle Scholar
  35. Redecker, D., Kodner, R. and Graham, L.E. (2000) Glomolean fungi from the Ordovician. Science 289: 1920–1921.PubMedCrossRefGoogle Scholar
  36. Remy, W., Taylor, T.N. and Hass, H. (1994) Early Devonian fungi: a blastocladalean fungus with sexual reproduction. Am. J. Bot. 81: 690–702.CrossRefGoogle Scholar
  37. Retallack, G.J. (1994) Were the Ediacaran fossils lichens? Paleobiology 20: 523–544.Google Scholar
  38. Stechmann, A. and Cavalier-Smith, T. (2002) Rooting the eukaryote tree by using a derived gene fusion. Science 297: 89–91.PubMedCrossRefGoogle Scholar
  39. Taylor, J.W. and Berbee, M.L. (2006) Dating divergences in the fungal tree of life: review and new analyses. Mycologia 98: 838–849.PubMedCrossRefGoogle Scholar
  40. Taylor, T.N., Hass, H. and Kerp, H. (1999) The oldest fossil ascomycetes. Nature 399: 648.PubMedCrossRefGoogle Scholar
  41. Tyler, S.A. and Barghoorn, E.S. (1954) Occurrence of structurally preserved plants in Pre-Cambrian Rocks of the Canadian Shield. Science 119: 606–608.PubMedCrossRefGoogle Scholar
  42. Walsh, M.M. and Lowe, D.R. (1999) Modes of accumulation of carbonaceous matter in the Early Archaean: a petrographic and geochemical study of the carbonaceous cherts of the Swaziland Supergroup, In: D.R. Lowe and G.R. Byerly (eds.) Geologic Evolution of the Barberton Greenstone Belt, South Africa. Geol. Soc. Amer. Special Paper 329: 115–132.Google Scholar
  43. Walter, M. (1976) Stromatolites: Developments in Sedimentology 20. Elsevier, Amsterdam.Google Scholar
  44. Walter, H. and Reissmann, R. (1994) Organische (?) Strukturen in Achatgängen des Osterzgebirges (Sachsen). Paläont. Z. 68: 5–16.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Geomicrobiology, ICBMCarl von Ossietzky Universität OldenburgOldenburgGermany

Personalised recommendations