Skip to main content

Iron and Bacterial Biofilm Development

  • Chapter
  • First Online:
Microbial Mats

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 14))

Abstract

Iron is an essential element for nearly all organisms on earth including most bacteria, which have to acquire iron to maintain growth. Iron is an important cofactor of many enzymes, serving as a cofactor in electron carrying proteins, and is also important for RNA and DNA metabolism. Although iron is required for growth, high concentrations can be toxic as excess iron promotes generation of free radicals via the Fenton reaction, radicals that damage DNA, proteins, and the cell membrane (Touati, 2000). At the beginning of life on earth, iron was readily available and soluble. However, as our planet matured the levels of oxygen in the atmosphere increased, resulting in dramatically reduced iron solubility, exacerbating the toxic effects associated with this element. Consequently, bacteria had to develop sophisticated mechanisms to scavenge iron from dilute environmental sources and in parallel regulate tightly cellular iron homeostasis. It is interesting to note that as life on earth continues to evolve, the role of iron as an essential element is maintained. Although the microbial growth requirement for iron has been known for many years, it was discovered only recently that this metal serves also as a signal for bacterial biofilm development. In this chapter, we will review the most recent findings concerning iron regulation of biofilm formation within the more general context of the relationship between iron and bacteria in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andrews, S.C., Robinson, A.K. and Rodriguez-Quinones, F. (2003) Bacterial iron homeostasis. FEMS Microbiol. Rev. 27: 215–237.

    Article  PubMed  CAS  Google Scholar 

  • Banin, E., Vasil, M.L. and Greenberg, E.P. (2005) Iron and Pseudomonas aeruginosa biofilm formation. Proc. Natl. Acad. Sci. USA 102: 11076–11081.

    Article  PubMed  CAS  Google Scholar 

  • Banin, E., Brady, K.M. and Greenberg, E.P. (2006) Chelator-induced dispersal and killing of Pseudomonas aruginoa. Appl. Environ. Microbiol. 72: 2064–2069.

    Article  PubMed  CAS  Google Scholar 

  • Beech, I.B. and Sunner, J. (2004) Biocorrosion: towards understanding interactions between biofilms and metals. Curr. Opin. Biotechnol. 15: 181–186.

    Article  PubMed  CAS  Google Scholar 

  • Beenken, K.E., Dunman, P.M., McAleese, F., Macapagal, D., Murphy, E., Projan, S.J., Blevins, J.S. and Smeltzer, M.S. (2004) Global gene expression in Staphylococcus aureus biofilms. J. Bacteriol. 186: 4665–4684.

    Article  PubMed  CAS  Google Scholar 

  • Bollinger, N., Hassett, D.J., Iglewski, B.H., Costerton, J.W. and McDermott, T.R. (2001) Gene expression in Pseudomonas aeruginosa: evidence of iron override effects on quorum sensing and biofilm-specific gene regulation. J. Bacteriol. 183: 1990–1996.

    Article  PubMed  CAS  Google Scholar 

  • Braun, V. and Herrmann, C. (2007) Docking of the periplasmic FecB binding protein to the FecCD transmembrane proteins in the ferric citrate transport system of Escherichia coli. J. Bacteriol. 189: 6913–6918.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, B.E. and Buchanan, S.K. (2008) Signaling mechanisms for activation of extracytoplasmic function (ECF) sigma factors. Biochim. Biophys. Acta 1778: 1930–1945.

    Article  PubMed  CAS  Google Scholar 

  • Brown-Elliott, B.A. and Wallace, R.J. Jr. (2002) Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. Clin. Microbiol. Rev. 15: 716–746.

    Article  PubMed  Google Scholar 

  • Cescau, S., Cwerman, H., Letoffe, S., Delepelaire, P., Wandersman, C. and Biville, F. (2007) Heme acquisition by hemophores. Biometals 20: 603–613.

    Article  PubMed  CAS  Google Scholar 

  • Chan, C.S., De Stasio, G., Welch, S.A., Girasole, M., Frazer, B.H., Nesterova, M.V., Fakra, S. and Banfield, J.F. (2004) Microbial polysaccharides template assembly of nanocrystal fibers. Science 303: 1656–1658.

    Article  PubMed  CAS  Google Scholar 

  • Chen, X. and Stewart, P.S. (2002) Role of electrostatic interactions in cohesion of bacterial biofilms. Appl. Microbiol. Biotechnol. 59: 718–720.

    Article  PubMed  CAS  Google Scholar 

  • Claverys, J.P. (2001) A new family of high-affinity ABC manganese and zinc permeases. Res. Microbiol. 152: 231–243.

    Article  PubMed  CAS  Google Scholar 

  • Cornelis, P. and Aendekerk, S. (2004) A new regulator linking quorum sensing and iron uptake in Pseudomonas aeruginosa. Microbiology 150: 752–756.

    Article  PubMed  CAS  Google Scholar 

  • Cramton, S.E., Gerke, C., Schnell, N.F., Nichols, W.W. and Gotz, F. (1999) The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect. Immun. 67: 5427–5433.

    PubMed  CAS  Google Scholar 

  • Davies, D.G., Parsek, M.R., Pearson, J.P., Iglewski, B.H., Costerton, J.W. and Greenberg, E.P. (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295–298.

    Article  PubMed  CAS  Google Scholar 

  • Deighton, M. and Borland, R. (1993) Regulation of slime production in Staphylococcus epidermidis by iron limitation. Infect. Immun. 61: 4473–4479.

    PubMed  CAS  Google Scholar 

  • Delany, I., Rappuoli, R. and Scarlato, V. (2004) Fur functions as an activator and as a repressor of putative virulence genes in Neisseria meningitidis. Mol. Microbiol. 52: 1081–1090.

    Article  PubMed  CAS  Google Scholar 

  • Dryla. A., Gelbmann. D., von Gabain, A. and Nagy, E. (2003) Identification of a novel iron regulated staphylococcal surface protein with haptoglobin-haemoglobin binding activity. Mol. Microbiol. 49: 37–53.

    Article  PubMed  CAS  Google Scholar 

  • Duan. K. and Surette, M.G. (2007) Environmental regulation of Pseudomonas aeruginosa PAO1 Las and Rhl quorum-sensing systems. J. Bacteriol. 189: 4827–4836.

    Article  PubMed  CAS  Google Scholar 

  • Dubiel, M., Hsu, C.H., Chien, C.C., Mansfeld, F. and Newman, D.K. (2002) Microbial iron respiration can protect steel from corrosion. Appl. Environ. Microbiol. 68: 1440–1445.

    Article  PubMed  CAS  Google Scholar 

  • Ekins, A., Khan, A.G., Shouldice, S.R. and Schryvers, A.B. (2004) Lactoferrin receptors in Gram-negative bacteria: insights into the iron acquisition process. Biometals 17: 235–243.

    Article  PubMed  CAS  Google Scholar 

  • Francesca, B., Ajello, M., Bosso, P., Morea, C., Andrea, P., Giovanni, A. and Piera, V. (2004) Both lactoferrin and iron influence aggregation and biofilm formation in Streptococcus mutans. Biometals 17: 271–278.

    Article  CAS  Google Scholar 

  • Götz, F. (2002) Staphylococcus and biofilms. Mol. Microbiol. 43: 1367–1378.

    Article  PubMed  Google Scholar 

  • Hall-Stoodley, L. and Stoodley, P. (2005) Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol. 13: 7–10.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, W.A. (1985) Sulphate-reducing bacteria and anaerobic corrosion. Annu. Rev. Microbiol. 39: 195–217.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, W.A. (1998) Bioenergetics of sulphate-reducing bacteria in relation to their environmental impact. Biodegradation 9: 201–212.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, W.A. (2003) Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling 19: 65–76.

    Article  PubMed  CAS  Google Scholar 

  • Hancock, V., Ferrieres, L. and Klemm, P. (2007) Biofilm formation by asymptomatic and virulent urinary tract infectious Escherichia coli strains. FEMS Microbiol. Lett. 267: 30–37.

    Article  PubMed  CAS  Google Scholar 

  • Hancock, V., Ferrieres, L. and Klemm, P. (2008) The ferric yersiniabactin uptake receptor FyuA is required for efficient biofilm formation by urinary tract infectious Escherichia coli in human urine. Microbiology 154: 167–175.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, T.A., Peng, W.T., Loubens, I. and Storey, D.G. (2002) The Pseudomonas aeruginosa alternative sigma factor PvdS controls exotoxin A expression and is expressed in lung infections associated with cystic fibrosis. Microbiology 148: 3183–3193.

    PubMed  CAS  Google Scholar 

  • Hussain, M., Becker, K., von Eiff, C., Schrenzel, J., Peters, G. and Herrmann, M. (2001) Identification and characterization of a novel 38.5-kilodalton cell surface protein of Staphylococcus aureus with extended-spectrum binding activity for extracellular matrix and plasma proteins. J. Bacteriol. 183: 6778–6786.

    Article  PubMed  CAS  Google Scholar 

  • Jacques, J.F., Jang, S., Prevost, K., Desnoyers, G., Desmarais, M., Imlay, J. and Masse, E. (2006) RyhB small RNA modulates the free intracellular iron pool and is essential for normal growth during iron limitation in Escherichia coli. Mol. Microbiol. 62: 1181–1190.

    Article  PubMed  CAS  Google Scholar 

  • Jayaraman, A., Sun, A.K. and Wood, T.K. (1998) Characterization of axenic Pseudomonas fragi and Escherichia coli biofilms that inhibit corrosion of SAE 1018 steel. J. Appl. Microbiol. 84: 485–492.

    Article  PubMed  CAS  Google Scholar 

  • Jayaraman, A., Hallock, P.J., Carson, R.M., Lee, C.C., Mansfeld, F.B. and Wood, T.K. (1999a) Inhibiting sulfate-reducing bacteria in biofilms on steel with antimicrobial peptides generated in situ. Appl. Microbiol. Biotechnol. 52: 267–275.

    Article  PubMed  CAS  Google Scholar 

  • Jayaraman, A., Ornek, D., Duarte, D.A., Lee, C.C., Mansfeld, F.B. and Wood, T.K. (1999b) Axenic aerobic biofilms inhibit corrosion of copper and aluminum. Appl. Microbiol. Biotechnol. 52: 787–790.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, M., Cockayne, A., Williams, P.H. and Morrissey, J.A. (2005) Iron-responsive regulation of biofilm formation in Staphylococcus aureus involves fur-dependent and fur-independent mechanisms. J. Bacteriol. 187: 8211–8215.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, M., Cockayne, A. and Morrissey, J.A. (2008) Iron-regulated biofilm formation in Staphylococcus aureus Newman requires ica and the secreted protein Emp. Infect. Immun. 76: 1756–1765.

    Article  PubMed  CAS  Google Scholar 

  • Jones. D.A. and Amy, P.S. (2000) Related electrochemical characteristics of microbial metabolism and iron corrosion. Ind. Eng. Chem. Res. 39: 575–582.

    Article  CAS  Google Scholar 

  • Kim, S.J., Park, R.Y., Kang, S.M., Choi, M.H., Kim, C.M. and Shin, S.H. (2006) Pseudomonas aeruginosa alkaline protease can facilitate siderophore-mediated iron-uptake via the proteolytic cleavage of transferrins. Biol. Pharm. Bull. 29: 2295–2300.

    Article  PubMed  CAS  Google Scholar 

  • Klausen, M., Aaes-Jorgensen, A., Molin, S. and Tolker-Nielsen, T. (2003) Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol. Microbiol. 50: 61–68.

    Article  PubMed  CAS  Google Scholar 

  • Koch, G.H., Brongers, M.P.H., Thompson, N.G., Virmani, Y.P. and Payer, J.H. (2001) Corrosion Costs and Preventative Strategies in the United States. Report by CC Technologies Laboratories to the Federal Highway Administration. Report FHWA-RD-01-156. Office of Infrastructure Research and Development, Washington, DC.

    Google Scholar 

  • Larsen, N.A., Lin, H., Wei, R., Fischbach, M.A. and Walsh, C.T. (2006) Structural characterization of enterobactin hydrolase IroE. Biochemistry 45: 10184–10190.

    Article  PubMed  CAS  Google Scholar 

  • Lee, A.K. and Newman, D.K. (2003) Microbial iron respiration: impacts on corrosion processes. Appl. Microbiol. Biotechnol. 62: 134–139.

    Article  PubMed  CAS  Google Scholar 

  • Lee, N.S., Kim, B.T., Kim, D.H. and Kobashi, K. (1995) Purification and reaction mechanism of arylsulfate sulfotransferase from Haemophilus K-12, a mouse intestinal bacterium. J. Biochem. 118: 796–801.

    PubMed  CAS  Google Scholar 

  • Lequette, Y., Lee, J.H., Ledgham, F., Lazdunski, A. and Greenberg, E.P. (2006) A distinct QscR regulon in the Pseudomonas aeruginosa quorum-sensing circuit. J. Bacteriol. 188: 3365–3370.

    Article  PubMed  CAS  Google Scholar 

  • Maresso, A.W. and Schneewind, O. (2006) Iron acquisition and transport in Staphylococcus aureus. Biometals 19: 193–203.

    Article  PubMed  CAS  Google Scholar 

  • Maresso, A.W., Garufi, G. and Schneewind, O. (2008) Bacillus anthracis secretes proteins that mediate heme acquisition from hemoglobin. PLoS. Pathog. 4 :e1000132.

    Article  PubMed  Google Scholar 

  • Masse, E., Vanderpool, C.K. and Gottesman, S. (2005) Effect of RyhB small RNA on global iron use in Escherichia coli. J. Bacteriol. 187: 6962–6971.

    Article  PubMed  CAS  Google Scholar 

  • Matsukawa. M. and Greenberg, E.P. (2004) Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J. Bacteriol. 186: 4449–4456.

    Article  PubMed  CAS  Google Scholar 

  • Mey, A.R., Craig, S.A. and Payne, S.M. (2005) Characterization of Vibrio cholerae RyhB: the RyhB regulon and role of ryhB in biofilm formation. Infect. Immun. 73: 5706–5719.

    Article  PubMed  CAS  Google Scholar 

  • Miethke, M. and Marahiel, M.A. (2007) Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 71: 413–451.

    Article  PubMed  CAS  Google Scholar 

  • Miethke, M., Klotz, O., Linne, U., May, J.J., Beckering, C.L. and Marahiel, M.A. (2006) Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. Mol. Microbiol. 61: 1413–1427.

    Article  PubMed  CAS  Google Scholar 

  • Miller, C.E., Rock, J.D., Ridley, K.A., Williams, P.H. and Ketley, J.M. (2008) Utilization of lactoferrin-bound and transferrin-bound iron by Campylobacter jejuni. J. Bacteriol. 190: 1900–1911.

    Article  PubMed  CAS  Google Scholar 

  • Moelling, C., Oberschlacke, R., Ward, P., Karijolich, J., Borisova, K., Bjelos, N. and Bergeron, L. (2007) Metal-dependent repression of siderophore and biofilm formation in Actinomyces naeslundii. FEMS Microbiol. Lett. 275: 214–220.

    Article  PubMed  CAS  Google Scholar 

  • Musk, D.J., Banko, D.A. and Hergenrother, P.J. (2005) Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. Chem. Biol. 12: 789–796.

    Article  PubMed  CAS  Google Scholar 

  • O’Toole, G.A. and Kolter, R. (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30: 295–304.

    Article  PubMed  Google Scholar 

  • O’Toole, G., Kaplan, H.B. and Kolter, R. (2000) Biofilm formation as microbial development. Annu. Rev. Microbiol. 54: 49–79.

    Article  PubMed  Google Scholar 

  • Oglesby, A.G., Farrow, J.M., 3rd, Lee, J.H., Tomaras, A.P., Greenberg, E.P., Pesci, E.C. and Vasil, M.L. (2008) The influence of iron on Pseudomonas aeruginosa physiology: a regulatory link between iron and quorum sensing. J. Biol. Chem. 283: 15558–5567.

    Article  PubMed  CAS  Google Scholar 

  • Ojha, A. and Hatfull, G.F. (2007) The role of iron in Mycobacterium smegmatis biofilm formation: the exochelin siderophore is essential in limiting iron conditions for biofilm formation but not for planktonic growth. Mol. Microbiol. 66: 468–483.

    Article  PubMed  CAS  Google Scholar 

  • Ojha, A., Anand, M., Bhatt, A., Kremer, L., Jacobs, W.R., Jr. and Hatfull, G.F. (2005) GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123: 861–873.

    Article  PubMed  CAS  Google Scholar 

  • Ornek, D., Jayaraman, A., Syrett, B.C., Hsu, C.H., Mansfeld, F.B. and Wood, T.K. (2002) Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or γ-polyglutamate. Appl. Microbiol. Biotechnol. 58: 651–657.

    Article  PubMed  CAS  Google Scholar 

  • Orsi, N. (2004) The antimicrobial activity of lactoferrin: current status and perspectives. Biometals 17: 189–196.

    Article  PubMed  CAS  Google Scholar 

  • Park, R.Y., Sun, H.Y., Choi, M.H., Bai, Y.H., Chung, Y.Y. and Shin, S.H. (2006) Proteases of a Bacillus subtilis clinical isolate facilitate swarming and siderophore-mediated iron uptake via proteolytic cleavage of transferrin. Biol. Pharm. Bull. 29: 850–853.

    Article  PubMed  CAS  Google Scholar 

  • Patriquin, G.M., Banin, E., Gilmour, C., Tuchman, R., Greenberg, E.P. and Poole, K. (2008) Influence of quorum sensing and iron on twitching motility and biofilm formation in Pseudomonas aeruginosa. J. Bacteriol. 190: 662–671.

    Article  PubMed  CAS  Google Scholar 

  • Pesci, E.C., Milbank, J.B., Pearson, J.P., McKnight, S., Kende, A.S., Greenberg, E.P. and Iglewski, B.H. (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 96: 11229–11234.

    Article  PubMed  CAS  Google Scholar 

  • Pichon, C. and Felden, B. (2007) Proteins that interact with bacterial small RNA regulators. FEMS Microbiol. Rev. 31: 614–625.

    Article  PubMed  CAS  Google Scholar 

  • Pohlmann, V. and Marahiel, M.A. (2008) Delta-amino group hydroxylation of L-ornithine during coelichelin biosynthesis. Org. Biomol. Chem. 6: 1843–1848.

    Article  PubMed  CAS  Google Scholar 

  • Poole, K. and McKay, G.A. (2003) Iron acquisition and its control in Pseudomonas aeruginosa: many roads lead to Rome. Front. Biosci. 8: 661–686.

    Article  Google Scholar 

  • Potekhina, J.S., Shericheva, N.G., Povetkina, L.B., Pospelov, A.P., Rakitina, T.A., Warnecke, F. and Gottschalk, G. (1999) Role of microorganisms in corrosion inhibition of metals in aquatic habitats. Appl. Microbiol. Biotechnol. 52: 639–646.

    Article  CAS  Google Scholar 

  • Raymond, K.N., Dertz, E.A. and Kim, S.S. (2003) Enterobactin: an archetype for microbial iron transport. Proc. Natl. Acad. Sci. USA 100: 3584–3588.

    Article  PubMed  CAS  Google Scholar 

  • Rhodes, E.R., Shoemaker, C.J., Menke, S.M., Edelmann, R.E. and Actis, L.A. (2007) Evaluation of different iron sources and their influence in biofilm formation by the dental pathogen Actinobacillus actinomycetemcomitans. J. Med. Microbiol. 56: 119–128.

    Article  PubMed  CAS  Google Scholar 

  • Rohwerder, T., Gehrke, T., Kinzler, K. and Sand, W. (2003) Bioleaching review Part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol. 63: 239–248.

    Article  PubMed  CAS  Google Scholar 

  • Rolerson, E., Swick, A., Newlon, L., Palmer, C., Pan, Y., Keeshan, B. and Spatafora, G. (2006) The SloR/Dlg metalloregulator modulates Streptococcus mutans virulence gene expression. J. Bacteriol. 188: 5033–5044.

    Article  PubMed  CAS  Google Scholar 

  • Roos, V., Nielsen, E.M. and Klemm, P. (2006) Asymptomatic bacteriuria Escherichia coli strains: adhesins, growth and competition. FEMS Microbiol. Lett. 262: 22–30.

    Article  PubMed  CAS  Google Scholar 

  • Rudolph, G., Hennecke, H. and Fischer, H.M. (2006) Beyond the Fur paradigm: iron-controlled gene expression in rhizobia. FEMS Microbiol. Rev. 30: 631–648.

    Article  PubMed  CAS  Google Scholar 

  • Schröder, I., Johnson, E. and de Vries, S. (2003) Microbial ferric iron reductases. FEMS Microbiol. Rev. 27: 427–447.

    Article  PubMed  Google Scholar 

  • Sebulsky, M.T. and Heinrichs, D.E. (2001) Identification and characterization of fhuD1 and fhuD2, two genes involved in iron-hydroxamate uptake in Staphylococcus aureus. J. Bacteriol. 183: 4994–5000.

    Article  PubMed  CAS  Google Scholar 

  • Shigematsu, T., Fukushima, J., Oyama, M., Tsuda, M., Kawamoto, S. and Okuda, K. (2001) Iron-mediated regulation of alkaline proteinase production in Pseudomonas aeruginosa. Microbiol. Immunol. 45: 579–590.

    PubMed  CAS  Google Scholar 

  • Singh, P.K. (2004) Iron sequestration by human lactoferrin stimulates P. aeruginosa surface motility and blocks biofilm formation. Biometals 17: 267–270.

    Article  PubMed  CAS  Google Scholar 

  • Singh, P.K., Schaefer, A.L., Parsek, M.R., Moninger, T.O., Welsh, M.J. and Greenberg, E.P. (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407: 762–764.

    Article  PubMed  CAS  Google Scholar 

  • Singh, P.K., Parsek, M.R., Greenberg, E.P. and Welsh, M.J. (2002) A component of innate immunity prevents bacterial biofilm development. Nature 417: 552–555.

    Article  PubMed  CAS  Google Scholar 

  • Sprencel, C., Cao, Z., Qi, Z., Scott, D.C., Montague, M.A., Ivanoff, N., Xu, J., Raymond, K.M., Newton, S.M. and Klebba, P.E. (2000) Binding of ferric enterobactin by the Escherichia coli periplasmic protein FepB. J. Bacteriol. 182: 5359–5364.

    Article  PubMed  CAS  Google Scholar 

  • Tam, R. and Saier, M.H., Jr. (1993) Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol. Rev. 57: 320–346.

    PubMed  CAS  Google Scholar 

  • Tomaras, A.P., Dorsey, C.W., Edelmann, R.E. and Actis, L.A. (2003) Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology 149: 3473–3484.

    Article  PubMed  CAS  Google Scholar 

  • Touati, D. (2000) Iron and oxidative stress in bacteria. Arch. Biochem. Biophys. 373: 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Vasil, M.L. (2007) How we learnt about iron acquisition in Pseudomonas aeruginosa: a series of very fortunate events. Biometals 20: 587–601.

    Article  PubMed  CAS  Google Scholar 

  • Visca, P., Leoni, L., Wilson, M.J. and Lamont, I.L. (2002) Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol. Microbiol. 45: 1177–1190.

    Article  PubMed  CAS  Google Scholar 

  • Vuong, C., Kidder, J.B., Jacobson, E.R., Otto, M., Proctor, R.A. and Somerville, G.A. (2005) Staphylococcus epidermidis polysaccharide intercellular adhesin production significantly increases during tricarboxylic acid cycle stress. J. Bacteriol. 187: 2967–2973.

    Article  PubMed  CAS  Google Scholar 

  • Wai, S.N., Mizunoe, Y., Takade, A., Kawabata, S.I. and Yoshida, S.I. (1998) Vibrio cholerae O1 strain TSI-4 produces the exopolysaccharide materials that determine colony morphology, stress resistance, and biofilm formation. Appl. Environ. Microbiol. 64: 3648–3655.

    PubMed  CAS  Google Scholar 

  • Wandersman, C. and Delepelaire, P. (2004) Bacterial iron sources: from siderophores to hemophores. Annu. Rev. Microbiol. 58: 611–647.

    Article  PubMed  CAS  Google Scholar 

  • Whitchurch, C.B., Tolker-Nielsen, T., Ragas, P.C. and Mattick, J.S. (2002) Extracellular DNA required for bacterial biofilm formation. Science 295: 1487.

    Article  PubMed  CAS  Google Scholar 

  • Whiteley, M., Bangera, M.G., Bumgarner, R.E., Parsek, M.R., Teitzel, G.M., Lory, S. and Greenberg, E.P. (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413: 860–864.

    Article  PubMed  CAS  Google Scholar 

  • Wilderman, P.J., Vasil, A.I., Johnson, Z., Wilson, M.J., Cunliffe, H.E., Lamont, I.L. and Vasil, M.L. (2001) Characterization of an endoprotease (PrpL) encoded by a PvdS-regulated gene in Pseudomonas aeruginosa. Infect. Immun. 69: 5385–5394.

    Article  PubMed  CAS  Google Scholar 

  • Wilderman, P.J., Sowa, N.A., FitzGerald, D.J., FitzGerald, P.C., Gottesman, S., Ochsner, U.A. and Vasil, M.L. (2004) Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. Proc. Natl. Acad. Sci. USA 101: 9792–9797.

    Article  PubMed  CAS  Google Scholar 

  • Williams, H.D., Zlosnik, J.E. and Ryall, B. (2007) Oxygen, cyanide and energy generation in the cystic fibrosis pathogen Pseudomonas aeruginosa. Adv. Microb. Physiol. 52: 1–71.

    Article  PubMed  CAS  Google Scholar 

  • Wolff, N., Izadi-Pruneyre, N., Couprie, J., Habeck, M., Linge, J., Rieping, W., Wandersman, C., Nilges, M., Delepierre, M. and Lecroisey, A. (2008) Comparative analysis of structural and dynamic properties of the loaded and unloaded hemophore HasA: functional implications. J. Mol. Biol. 376: 517–525.

    Article  PubMed  CAS  Google Scholar 

  • Yang, L., Barken, K.B., Skindersoe, M.E., Christensen, A.B., Givskov, M. and Tolker-Nielsen, T. (2007) Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology 153: 1318–1328.

    Article  PubMed  CAS  Google Scholar 

  • Zuo, R. (2007) Biofilms: strategies for metal corrosion inhibition employing microorganisms. Appl. Microbiol. Biotechnol. 76: 1245–1253.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofir Avidan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Avidan, O., Satanower, S., Banin, E. (2010). Iron and Bacterial Biofilm Development. In: Seckbach, J., Oren, A. (eds) Microbial Mats. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3799-2_19

Download citation

Publish with us

Policies and ethics