Microbial Mats pp 253-273 | Cite as

Diversity and Role of Cyanobacteria and Aerobic Heterotrophic Microorganisms in Carbon Cycling in Arid Cyanobacterial Mats

  • Raeid M. M. Abed
  • Katharina Kohls
  • Katarzyna A Palinska
  • Stjepko Golubic
Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 14)

Abstract

Large areas of the intertidal flats of the Arabian Gulf are inhabited by different types of cyanobacterial mats (pustular, flat, pinnacle, convoluted, and gelatinous). These mats vary in their pigmentation, shape, and microbial composition depending on their position and the environmental conditions they are exposed to. The temperature in this region may exceed 50°C in hot summers, salinity ranges between 6% and 20% depending on the closeness to the water line, and the UV and light intensity are high, causing some of the mats to completely desiccate. Using culture-dependent, molecular, and microsensor techniques, the diversity of cyanobacteria and aerobic heterotrophic microorganisms and the role of their key processes (i.e., oxygenic photosynthesis and respiration, respectively) in carbon cycling in the uppermost layer of different mats was studied. The difficulty of obtaining axenic cultures of cyanobacteria may be due to the close association of the two groups. While cyanobacteria fuel mat microorganisms with organics via photosynthesis and fermentation processes, aerobic heterotrophs in the oxic layers of mats utilize these organics and produce carbon dioxide, which is then made available for cyanobacterial photosynthesis. Cyanobacteria in these mats include Microcoleus chthonoplastes, Lyngbya aestuarii, Entophysalis major, Schizothrix splendida, and some unicellular scytonemin-containing cyanobacteria, whereas the aerobic heteroptrophs belonged primarily to Bacteriodetes, Proteobacteria, the Chloroflexus group, and many others. Rates of photosynthesis and light respiration were regulated by salinity and temperature. Both processes remained coupled and their rates decreased with increasing salinities. The mats at the lowest tidal zones exhibited the highest rates of photosynthesis and light respiration. The rates of the two processes also decreased with increasing temperatures. Photosynthesis and light respiration rates are regulated by salinity and temperature in order to maintain the relationship between organic production and decomposition, which determines the accretion rates of mats.

Keywords

Aerobic Respiration Oxic Layer Aerobic Heterotrophic Bacterium Aerobic Heterotroph Oxygenic Phototroph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdullahi, A.S., Underwood, G.J.C. and Gretz, M.R. (2006) Extracellular matrix assembly in diatoms (Bacillariophyceae). V. Environmental effects on polysaccharide synthesis in the model diatom, Phaeodactylum tricornutum. J. Phycol. 42: 363–378.CrossRefGoogle Scholar
  2. Abed, R.M.M., Polerecky, L., Al Najjar, M. and de Beer, D. (2006) Effect of temperature on photosynthesis, oxygen consumption and sulfide production in an extremely hypersaline cyanobacterial mat. Aquat. Microb. Ecol. 44: 21–30.CrossRefGoogle Scholar
  3. Abed, R.M.M., Kohls, K. and de Beer, D. (2007) Effect of salinity changes on the bacterial diversity, photosynthesis and oxygen consumption of cyanobacterial mats from an intertidal flat of the Arabian Gulf. Environ. Microbiol. 9: 1384–1392.PubMedCrossRefGoogle Scholar
  4. Abed, R.M.M., Kohls, K., Schoon, R., Scherf, A.K., Schacht, M., Palinska, A.K., Al-Hassani, H., Hamza, W., Rullkötter, J. and Golubic, S. (2008) Lipid biomarkers, pigments and cyanobacterial diversity of microbial mats across intertidal flats of the arid coast of the Arabian Gulf (Abu Dhabi, UAE). FEMS Microbiol. Ecol. 65: 449–462.PubMedCrossRefGoogle Scholar
  5. Anderson, K.L., Tayne, T.A. and Ward, D.M. (1987) Formation and fate of fermentation products in hot spring cyanobacterial mats. Appl. Environ. Microbiol. 53: 2343–2352.PubMedGoogle Scholar
  6. Antón, J., Oren, A., Benlloch, S., Rodríguez-Valera, F., Amann, R. and Rosselló-Mora, R. (2002) Salinibacter ruber gen. nov., sp nov., a novel, extremely halophilic member of the bacteria from saltern crystallizer ponds. Int. J. Syst. Evol. Microbiol. 52: 485–491.PubMedGoogle Scholar
  7. Barth, H.-J. and Böer, B. (eds.) (2002) Sabkha Ecosystems. Vol. 1. The Arabian Peninsula and Adjacent Countries. Kluwer, Dordrecht.Google Scholar
  8. Bateson, M.M. and Ward, D.M. (1988) Photoexcretion and fate of glycolate in a hot spring cyanobacterial mat. Appl. Environ. Microbiol. 54: 1738–1743.PubMedGoogle Scholar
  9. Bauld, J. and Brock, T.D. (1974) Algal excretion and bacterial assimilation in hot spring algal mats. J. Phycol. 10: 101–106.Google Scholar
  10. Benlloch, S., López-López, A., Casamayor, E.O., Øvreås, L., Goddard, V. and Daae, F.L. (2002) Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ. Microbiol. 4: 349–360.PubMedCrossRefGoogle Scholar
  11. Blumwald, E. and Tel-Or, E. (1983) Salt adaptation of the cyanobacterium Synechococcus 6311 growing in continuous culture (turbidostat). Plant Physiol. 74: 183–185.CrossRefGoogle Scholar
  12. Buckling, A., Kassen, R., Bell, G. and Rainey, P.B. (2000) Disturbance and diversity in experimental microcosms. Nature 408: 961–964.PubMedCrossRefGoogle Scholar
  13. Canfield, D.E. and Des Marais, D.J. (1993) Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat. Geochim. Cosmochim. Acta 57: 3971–3984.PubMedCrossRefGoogle Scholar
  14. Canfield, D.E. and Des Marais, D.J. (1994) Cycling of carbon, sulfur, oxygen and nutrients in a microbial mat. Science 251: 1471–1473.CrossRefGoogle Scholar
  15. Casamayor, E.O., Massana, R., Benlloch, S., Øvreås, L., Diez, B. and López-López, A. (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ. Microbiol. 4: 338–348.PubMedCrossRefGoogle Scholar
  16. Cohen, Y. (1989) Photosynthesis in cyanobacterial mats and its relation to the sulfur cycle: a model for microbial sulfur interactions, In: Y. Cohen and E. Roseberg (eds.) Microbial Mats. Physiological Ecology of Benthic Microbial Communities. American Society for Microbiology, Washington, DC, pp. 22–36.Google Scholar
  17. Cohen, Y., Jørgensen, B.B., Revsbech, N.P. and Poplawski, R. (1986) Adaptation to hydrogen sulfide of oxygenic and anoxygenic photosynthesis among cyanobacteria. Appl. Environ. Microbiol. 51: 398–407.PubMedGoogle Scholar
  18. Corcelli, A., Lattanzio, V.M.T., Mascolo, G., Babudri, F., Oren, A. and Kates, M. (2004) Novel sulfonolipid in the extremely halophilic bacterium Salinibacter ruber. Appl. Environ. Microbiol. 70: 6678–6685.PubMedCrossRefGoogle Scholar
  19. Csonka, L.N. (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev. 53: 121–147.PubMedGoogle Scholar
  20. D’Amelio, E.D., Cohen, Y. and Des Marais, D.J. (1987) Association of a new type of gliding, filamentous, purple phototrophic bacterium inside bundles of Microcoleus chthonoplastes in hypersaline cyanobacterial mats. Arch. Microbiol. 147: 213–220.PubMedCrossRefGoogle Scholar
  21. Davison, I.R. (1991) Environmental effects on algal photosynthesis: temperature. J. Phycol. 27: 2–8.CrossRefGoogle Scholar
  22. Decho, A. (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr. Mar. Biol. Annu. Rev. 28: 73–153.Google Scholar
  23. Epping, E.H.G., Khalili, A. and Thar, R. (1999) Dynamics of photosynthesis and respiration in an intertidal biofilm. Limnol. Oceanogr. 44: 1936–1948.CrossRefGoogle Scholar
  24. Evans, G. (1966) The recent sedimentary facies of the Persian Gulf Region. Philos. Tr. R. Soc. S-A. 259: 291–298.CrossRefGoogle Scholar
  25. Farmer, J.D. (1992) Grazing and bioturbation in modern microbial mats, In: J.W. Schopf and C. Klein (eds.) The Proterozoic Biosphere – A Multidisciplinary Study. Cambridge University Press, Cambridge, pp. 247–251.Google Scholar
  26. Fernandes, T.A., Lyer, V. and Apte, S.K. (1993) Differential responses of nitrogen fixing cyanobacteria to salinity and osmotic stresses. Appl. Environ. Microbiol. 59: 899–904.PubMedGoogle Scholar
  27. Flemming, H.C. and Wingender, J. (2001) Relevance of microbial extrapolymeric substances (EPSs) – Part I: structural and ecological aspects. Water Sci. Technol. 43: 1–8.PubMedGoogle Scholar
  28. Fründ, C. and Cohen, Y. (1992) Diurnal cycles of sulfate reduction under oxic conditions in cyanobacterial mats. Appl. Environ. Microbiol. 58: 70–77.PubMedGoogle Scholar
  29. Fukui, M., Teske, A., Aßmus, B., Muyzer, G. and Widdel, F. (1999) Physiology, phylogenetic relationships, and ecology of filamentous sulfate-reducing bacteria (genus Desulfonema). Arch. Microbiol. 172: 193–203.PubMedCrossRefGoogle Scholar
  30. Galinski, E.A. (1995) Osmoadaptation in bacteria. Adv. Microb. Physiol. 37: 274–328.Google Scholar
  31. Garcia-Pichel, F., Wingard, C.E. and Castenholz, R.W. (1993) Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. Appl. Environ. Microbiol. 59: 170–176.PubMedGoogle Scholar
  32. Garcia-Pichel, F., Nübel, U. and Muyzer, G. (1998) The phylogeny of unicellular, extremely halotolerant cyanobacteria. Arch. Microbiol. 169: 469–482.PubMedCrossRefGoogle Scholar
  33. Garcia-Pichel, F., Kühl, M., Nübel, U. and Muyzer, G. (1999) Salinity dependent limitation of photosynthesis and oxygen exchange in microbial mats. J. Phycol. 35: 184–195.CrossRefGoogle Scholar
  34. Gerdes, G., Krumbein, W.E. and Holtkamp, E. (1985) Salinity and water activity related zonation of microbial communities and potential stromatolites of the Gavish Shabka, In: G.M. Friedman and W.E. Krumbein (eds.) Hypersaline Ecosystems. The Gavish Shabka. Springer, New York, pp. 238–266.CrossRefGoogle Scholar
  35. Glud, R.N., Ramsing, B. and Revsbech, N.P. (1992) Photosynthesis and photosynthesis coupled respiration in natural biofilms quantified with oxygen microsensors. J. Phycol. 28: 51–60.CrossRefGoogle Scholar
  36. Golubic, S. (1973) Three new species of Schizothrix Kützing (Cyanophyta) from marine algal mats. Schweiz. Z. Hydrol. 35: 152–156.Google Scholar
  37. Golubic, S. (1976) Organisms that build stromatolites, In: M.R. Walter (ed.) Stromatolites: Developments in Sedimentology. Elsevier, Amsterdam, pp. 113–126.CrossRefGoogle Scholar
  38. Golubic, S. (1991) Microbial mats of Abu Dhabi, In: L. Margulis and L. Olendzenski (eds.) Environmental Evolution, Effects of the Origin and Evolution of Life on Planet Earth. MIT Press, Cambridge, MA, pp. 131–147.Google Scholar
  39. Golubic, S. (2000) Microbial landscapes: Abu Dhabi and Shark Bay, In: L. Margulis, C. Matthews and A. Haselton (eds.) Environmental Evolution: Effects of the Origin and Evolution of Life on Planet Earth. MIT Press, Cambridge, MA, pp. 117–138.Google Scholar
  40. Grötzschel, S., Abed, R.M.M. and de Beer, D. (2002) Metabolic shifts in hypersaline microbial mats upon addition of organic substrates. Environ. Microbiol. 4: 683–695.PubMedCrossRefGoogle Scholar
  41. Hanada, S. and Pierson, B.K. (2007) The family Chloroflexaceae, In: S. Falkow, E. Rosenberg, K.-H. Schleifer and E. Stackebrandt (eds.) The Prokaryotes. A Handbook on the Biology of Bacteria, Vol. 7. Springer, New York, pp. 815–842.Google Scholar
  42. Hellebust, J. (1965) Excretion of some organic compounds by marine phytoplankton. Limnol. Oceanogr. 10: 192–206.CrossRefGoogle Scholar
  43. Javor, B.J. and Castenholz, R.W. (1984) Invertebrate grazers of a microbial mat, Laguna Gurrero Negro, Mexico, In: Y. Cohen, R.W. Castenholz and H.O. Halvorson (eds.) Microbial Mats: Stromatolites. Alan R. Liss, New York, pp. 85–94.Google Scholar
  44. Johst, K. and Huth, A. (2005) Testing the intermediate disturbance hypothesis: when will there be two peaks of diversity? Biodivers. Res. 11: 111–120.Google Scholar
  45. Jonkers, H.M. and Abed, R.M.M. (2003) Identification of aerobic heterotrophic bacteria from the photic zone of a hypersaline microbial mat. Aquat. Microb. Ecol. 30: 127–133.CrossRefGoogle Scholar
  46. Jørgensen, B.B., Cohen, Y. and Revsbech, N.P. (1983) Transition from anoxygenic to oxygenic photosynthesis in a Microcoleus chthonoplastes cyanobacterial mat. Appl. Environ. Microbiol. 51: 408–417.Google Scholar
  47. Jørgensen, B.B., Nelson, D.C. and Ward, D.M. (1992) Chemotrophy and decomposition in modern microbial mats, In: J.W. Schopf and C. Klein (eds.) The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, Cambridge, pp. 287–293.Google Scholar
  48. Joye, S.B. and Paerl, H.W. (1993) Contemporaneous nitrogen fixation and dentrification in intertidal microbial mats: rapid response to runoff events. Mar. Ecol. Prog. Ser. 94: 267–274.CrossRefGoogle Scholar
  49. Jungblut, A.D., Hawes, I., Mountfort, D., Hitzfeld, B., Dietrich, D.R., Burns, B.P. and Neilan, B.A. (2005) Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ. Microbiol. 7: 519–529.PubMedCrossRefGoogle Scholar
  50. Karsten, U. (1996) Growth and organic osmolytes of geographically different isolates of Microcoleus chthonoplastes (Cyanobacteria) from benthic microbial mats: response to salinity change. J. Phycol. 32: 501–506.CrossRefGoogle Scholar
  51. Kendall, C.S.St. and Skipwith, P.A.d,E. (1968) Recent algal mats of a Persian Gulf lagoon. J. Sediment. Petrol. 38: 1040–1058.Google Scholar
  52. Kendall, C.S.St. and Skipwith, P.A.d’E. (1969) Holocene shallow-water carbonate and evaporite sediments of the Khor al Bazam, Abu Dhabi, the southwest Persian Gulf. Bull. Am. Assoc. Petr. Geol. B 53: 841–869.Google Scholar
  53. Kinsman, D.J.J. (1964) Recent carbonate sedimentation near Abu Dhabi, Trucial Coast, Persian Gulf. Thesis, University of London, 302 pp.Google Scholar
  54. Kinsman, D.J.J. and Park, R.K. (1976) Algal belt and coastal sabkha evolution, Trucial Coast, Persian Gulf, In: M.R. Walter (ed.) Stromatolites: Developments in Sedimentology. Elsevier, Amsterdam, pp. 421–433.CrossRefGoogle Scholar
  55. Kirchman, D.L. (2002) The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. 39: 91–100.PubMedGoogle Scholar
  56. Kühl, M., Glud, R.N., Plough, H. and Ramsing, N.B. (1996) Microenvironmental control of photosynthesis and photosynthesis coupled respiration in an epilithic cyanobacterial biofilm. J. Phycol. 32: 799–812.CrossRefGoogle Scholar
  57. Ley, R.E., Harris, J.K., Wilcox, J., Spear, J.R., Miller, S.R., Bebout, B.M., Maresca, J.A., Bryant, D.A., Sogin, M.L. and Pace, N.R. (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl. Environ. Microbiol. 72: 3685–3695.PubMedCrossRefGoogle Scholar
  58. Li, W.K.W., Smith, J.C. and Platt, T. (1984) Temperature response of photosynthetic capacity and carboxylase activity in Arctic marine phytoplankton. Mar. Ecol. Prog. Ser. 17: 237–243.CrossRefGoogle Scholar
  59. Liu, H.B. and Buskey, E.J. (2000) Hypersalinity enhances the production of extracellular polymeric substances (EPS) in the Texas brown tide alga Aureoumbra lagunensis (Pelagophyceae). J. Phycol. 36: 71–77.CrossRefGoogle Scholar
  60. Lokier, S. and Steuber, T. (2008) Quantification of carbonate-ramp sedimentation and progradation rates for the late Holocene Abu Dhabi Shoreline. J. Sediment. Res. 78: 423–431.CrossRefGoogle Scholar
  61. Mackay, M.A., Norton, R.S. and Borowitzka, L.J. (1983) Marine blue green algae have a unique osmoregulatory system. Mar. Biol. 73: 301–307.CrossRefGoogle Scholar
  62. Madigan, M.T., Martinko, J.M., Dunlap, P.V. and Clark, D.P. (2006) Brock Biology of Microorganisms, 12th ed. Pearson Benjamin Cummings, San Francisco, CA.Google Scholar
  63. Minz, D., Flax, J.L., Green, S.J., Muyzer, G., Cohen, Y., Wagner, M., Rittmann, B.E. and Stahl, D.A. (1999) Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. Appl. Environ. Microbiol. 65: 4666–4671.PubMedGoogle Scholar
  64. Myklestad, S., Holm-Hansen, O., Varum, K.M. and Volcani, B.E. (1989) Rate of release of extracellular amino acids and carbohydrates from the marine diatom Chaetoceros affinis. J. Plankton Res. 11: 763–773.CrossRefGoogle Scholar
  65. Nold, S.C. and Ward, D.M. (1996) Photosynthate partitioning and fermentation in hot spring microbial mat communities. Appl. Environ. Microbiol. 62: 4598–4607.PubMedGoogle Scholar
  66. Oren, A. and Mana, L. (2002) Amino acid composition of bulk protein and salt relationships of selected enzymes of Salinibacter ruber, an extremely halophilic bacterium. Extremophiles 6: 217–223.PubMedCrossRefGoogle Scholar
  67. Oren, A., Heldal, H., Norland, S. and Galinski, E.A. (2002) Intracellular ion and organic solute concentrations of the extremely halophilic bacterium Salinibacter ruber. Extremophiles 6: 491–498.PubMedCrossRefGoogle Scholar
  68. Paerl, H.W. (1996) Microscale physiological and ecological studies of aquatic cyanobacteria: macroscale implications. Microsc. Res. Tech. 33: 47–72.PubMedCrossRefGoogle Scholar
  69. Paerl, H.W., Bebout, B.M., Joye, S.B. and Des Marais, D.J. (1993) Microscale characterization of dissolved organic matter production and uptake in marine microbial mat communities. Limnol. Oceanogr. 38: 1150–1161.PubMedCrossRefGoogle Scholar
  70. Paerl, H.W., Pinckney, J.L. and Steppe, T.F. (2000) Cyanobacterial–bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environ. Microbiol. 2: 11–26.PubMedCrossRefGoogle Scholar
  71. Park, R.K. (1977) The preservation potential of some recent stromatolites. Sedimentology 24: 485–506.CrossRefGoogle Scholar
  72. Proteau, P.J., Gerwick, W.H., Garcia-Pichel, F. and Castenholz, R. (1993) The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49: 825–829.PubMedCrossRefGoogle Scholar
  73. Purser, B.H. (ed.) (1973) Persian Gulf. Springer, New York, 471 pp.Google Scholar
  74. Raven, J.A. and Geider, R.J. (1988) Temperature and algal growth. New Phytol. 110: 441–461.CrossRefGoogle Scholar
  75. Reed, R.H., Richardson, D.L., Warr, S.R.C. and Stewart, W.D.P. (1984) Carbohydrate accumulation and osmotic stress in cyanobacteria. J. Gen. Microbiol. 130: 1–4.Google Scholar
  76. Reid, R.P., Vischer, P.T., Decho, A.W., Stolz, J.F., Bebout, B.M., Dupraz, C., Macintyre, I.G., Paerl, H.W., Pinckney, J.L., Prufert-Bebout, L., Steppe, T.F. and Des Maraia, D.J. (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406: 989–992.PubMedCrossRefGoogle Scholar
  77. Revsbech, N.P. and Jørgensen, B.B. (1983) Photosynthesis of benthic microflora measured with high spatial resolution by the oxygen microprofile method: capabilities and limitations of the method. Limnol. Oceanogr. 28: 749–756.CrossRefGoogle Scholar
  78. Sarnthein, M. (1972) Sediments and history of the postglacial transgressionin the Persian Gulf and northwest Gulf of Oman. Mar. Geol. 12: 245–266.CrossRefGoogle Scholar
  79. Staats, N., Stal, L.J. and Mur, L.R. (2000) Exopolysaccharide production by the epipelic diatom Cylindrotheca closterium: effects of nutrient conditions. J. Exp. Mar. Biol. Ecol. 249: 13–27.PubMedCrossRefGoogle Scholar
  80. Stal, L.J. (1991) The metabolic versatility of the mat-building cyanobacteria Microcoleus chthonoplastes and Oscillatoria limosa and its ecological significance. Arch. Hydrobiol. Suppl. 92: 453–467.Google Scholar
  81. Stal, L.J. (1995) Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytol. 131: 1–32.CrossRefGoogle Scholar
  82. Stal, L.J. and Moezelaar, R. (1997) Fermentation in cyanobacteria. FEMS Microbiol. Rev. 21: 179–211.CrossRefGoogle Scholar
  83. Sukenik, A., Bennett, J. and Falkowski, P. (1987) Light-saturated photosynthesis limitation by electron transport or carbon fixation. Biochim. Biophys. Acta 891: 205–215.CrossRefGoogle Scholar
  84. Teske, A., Ramsing, N.B., Habicht, K., Fukui, M., Kuver, J., Jørgensen, B.B. and Cohen, Y. (1998) Sulfate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt). Appl. Environ. Microbiol. 64: 2943–2951.PubMedGoogle Scholar
  85. Thamdrup, B., Hansen, J.W. and Jørgensen, B.B. (1998) Temperature dependance of aerobic respiration in a coastal sediment. FEMS Microbiol. Ecol. 25: 189–200.Google Scholar
  86. Vonshak, A., Guy, R. and Guy, M. (1988) The response of the filamentous cyanobacterium Spirulina platensis to salt stress. Arch. Microbiol. 150: 417–420.CrossRefGoogle Scholar
  87. Wieland, A. and Kühl, M. (2000) Short-term temperature effects on oxygen and sulfide cycling in a hypersaline cyanobacterial mat (Solar Lake, Egypt). Mar. Ecol. Prog. Ser. 196: 87–102.CrossRefGoogle Scholar
  88. Wieland, A. and Kühl, M. (2006) Regulation of photosynthesis and oxygen consumption in a hypersaline cyanobacterial mat (Camargue, France) by irradiance, temperature and salinity. FEMS Microbiol. Ecol. 55: 195–210.PubMedCrossRefGoogle Scholar
  89. Wierzchos, J., Ascaso, C. and McKay, C.P. (2006) Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 6: 1–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Raeid M. M. Abed
    • 1
  • Katharina Kohls
    • 2
  • Katarzyna A Palinska
    • 3
  • Stjepko Golubic
    • 4
  1. 1.College of Science, Biology DepartmentSultan Qaboos UniversityAl KhoudSultanate of Oman
  2. 2.Max Planck Institute for Marine MicrobiologyBremenGermany
  3. 3.Institute of Chemistry and Biology of the Marine Environment, Geomicrobiology DepartmentCarl von Ossietzky University of OldenburgOldenburgGermany
  4. 4.Biological Science CenterBoston UniversityBostonUSA

Personalised recommendations