Microbial Mats pp 207-220 | Cite as

Architecture of Archaeal-Dominated Microbial Mats from Cold Seeps in the Black Sea (Dnjepr Canyon, Lower Crimean Shelf)

  • Joachim Reitner
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 14)


The Black Sea is an excellent area to study cold methane seeps in various water depths and environments. The upper part of the water column is oxygenated down to a depth of ca. 120 m and is anaerobic below. Abundant small seepage structures within the oxygenated environment are recognizable by dense white mats of sulfide-oxidizing bacteria, within the anaerobic water column forest-like carbonate tower fields (e.g., GHOSTDABS-field), and huge mud volcanoes are common within deeper areas of the Black Sea (Greinert et al., 2006; Michaelis et al., 2002; Reitner et al., 2005a, b). The cold seeps with large methane-related carbonate build-ups in the area of Dnjepr Canyon were discovered in 1989 (Pimenov et al., 1997). For the first time, samples of carbonates were taken in the years 1993–1994 (Peckmann et al., 2001; Thiel et al., 2001). These important observations led to the approval of a big project cooperation of the German Ministry of Education and Research (BMBF): GHOSTDABS: Gas Hydrates, Occurrence, Stability, Transformation, Dynamic and Biology in the Black Sea within the framework of the “Geotechnologien Programm” of the BMBF and the German Research Council (DFG).


Cold Seep Pyrite Framboids Anaerobic Methane Oxidation Methane Carbonate Seep Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author thanks the crew of the R/V “Professor Logachev,” the Jago-submersible crew Karin Hissmann and Jürgen Schauer (IFM-GEOMAR), and the research group of Professor Michaelis (Hamburg) for excellent collaboration and help. The underwater photographs were provided by the Jago crew. This study received financial support through programs GHOSTDABS (03G0559A) of the Bundesministerium für Bildung und Forschung and the Deutsche Forschungsgemeinschaft (GEOTECHNOLOGIEN). He also thanks Volker Thiel, Christina Heller, Nadine Schaefer, Conny Kaubisch (Geobiology Göttingen), Michael Hoppert (Microbiology, Göttingen), and Jörn Peckmann (Marum, Bremen) for critical comments, analytical, and graphic help. This paper is Courant Research Centre Geobiology publication no. 22.


  1. Amann, R.I., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R. and Stahl, D.A. (1990a) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56: 1919–1925.PubMedGoogle Scholar
  2. Amann, R.I., Krumholz, L. and Stahl, D.A. (1990b) Fluorescent – oligonucleotide probing of whole cells for determinative phylogenetic and environmental studies in microbiology. J. Bacteriol. 172: 762–770.PubMedGoogle Scholar
  3. Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B.B., Witte, U. and Pfannkuche, O. (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407: 623–626.PubMedCrossRefGoogle Scholar
  4. Burggraf, S., Mayer, T., Amann, R., Schadhauser, S., Woese, C. and Stetter, K. (1994) Identifying members of the domain Archaea with rRNA-targeted oligonucleotide probes. Appl. Environ. Microbiol. 60: 3112–3119.PubMedGoogle Scholar
  5. Chistoserdova, L., Vorholt, J.A., Thauer, R.K. and Lidstrom, M.E. (1998) Transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic Archaea. Science 281: 99–102.PubMedCrossRefGoogle Scholar
  6. Greinert, J., Artemov. Y., Egorov. V., De Batist. M. and McGinnis, D. (2006) 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea: hydroacoustic characteristics and temporal variability. Earth Plant. Sci. Lett. 244: 1–15.CrossRefGoogle Scholar
  7. Heller, C., Hoppert, M. and Reitner, J. (2008) Immunological localization of coenzyme M reductase in anaerobic methane-oxidizing Archaea of ANME 1 and ANME 2 type. Geomicrobiol. J. 25: 1–8.CrossRefGoogle Scholar
  8. Hinrichs, K.-U., Hayes, J.M., Sylva, S.P., Brewer, P.G. and DeLong, E.F. (1999) Methane-consuming archaebacteria in marine sediments. Nature 398: 802–805.PubMedCrossRefGoogle Scholar
  9. Hoffmann, F., Janussen, D., Dröse, W., Arp, G. and Reitner, J. (2003) Histological investigation of organisms with hard skeletons: a case study of siliceous sponges. Biotech. Histochem. 78: 191–199.PubMedCrossRefGoogle Scholar
  10. Leefmann, T., Bauermeister, J., Kronz, A., Liebetrau, V., Reitner, J. and Thiel, V. (2008) Miniaturized biosignature analysis reveals implications for the formation of cold seep carbonates at Hydrate Ridge (off Oregon, USA). Biogeosciences 5: 731–738.CrossRefGoogle Scholar
  11. Manz, W., Arp, G., Schumann-Kindel, G., Szewzyk, U. and Reitner, J. (2000) Widefield deconvolution epifluorescence microscopy combined with fluorescence in situ hybridization reveals the spatial arrangement of bacteria in sponge tissue. J. Microbiol. Meth. 40: 125–134.CrossRefGoogle Scholar
  12. Manz, W., Eisenbrecher, M., Neu, T.R. and Szewzyk, U. (1998) Abundance and spatial organization of gram negative sulfate-reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiol. Ecol. 25: 43–61.CrossRefGoogle Scholar
  13. Martinez, J.S., Zhang, G.P., Holt, P.D., Jung, H.-T., Carrano, C.J., Haygood, M.G. and Butler, A. (2000) Self-assembling amphiphilic siderophores from marine bacteria. Science 287: 1245–1247.PubMedCrossRefGoogle Scholar
  14. Martinez, J.S., Carter-Franklin, J.N., Mann, E.L., Martin, J.D., Haygood, M.G. and Butler, A. (2003) Structure and membrane affinity of a suite of amphiphilic siderophores produced by a marine bacterium. Proc. Natl. Acad. Sci. USA 100: 3754–3759.PubMedCrossRefGoogle Scholar
  15. Michaelis, W., Seifert, R., Nauhaus, K., Treude, T., Thiel, V., Blumenberg, M., Knittel, K., Gieseke, A., Peterknecht, K., Pape, T., Boetius, A., Amann, R., Jørgensen, B. B., Widdel, F., Peckmann, J., Pimenov, N.V. and Gulin, M.B. (2002) Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297: 1013–1015.PubMedCrossRefGoogle Scholar
  16. Nauhaus, K., Treude, T., Boetius, A. and Krüger, M. (2004) Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ. Microbiol. 7: 98–106.CrossRefGoogle Scholar
  17. Peckmann, J. and Thiel, V. (2004) Carbon cycling at ancient methane-seeps. Chem. Geol. 205: 443–467.CrossRefGoogle Scholar
  18. Peckmann, J., Thiel, V., Michaelis, W., Clari, P., Gaillard, C., Martire, L. and Reitner, J. (1999) Cold seep deposits of Beauvoisin (Oxfordian; southeastern France) and Marmorito (Miocene; northern Italy): microbially induced, authigenic carbonates. Int. J. Earth Sci. 88: 60–75.CrossRefGoogle Scholar
  19. Peckmann, J., Reimer, A., Luth, U., Luth, C., Hansen, B.T., Heinicke, C., Hoefs, J. and Reitner, J. (2001) Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea. Mar. Geol. 177: 129–150.CrossRefGoogle Scholar
  20. Pimenov, N.V., Rusanov, I.I., Poglazova, M.N., Mityushina, L.L., Sorokin, D.Y., Khmelenina, V.N. and Trotsenko, Y.A. (1997) Bacterial mats on coral-like structures at methane seeps in the Black Sea. Microbiology (translated from Mikrobiologiya) 66: 354–360.Google Scholar
  21. Reitner, J., Wörheide, G., Lange, R. and Schumann-Kindel, G. (2001) Coralline Demosponges – a geobiological portrait. Bull. Tohoku Univ. Mus. 1: 210–226.Google Scholar
  22. Reitner, J., Peckmann, J., Blumenberg, M., Michaelis, W., Reimer, A. and Thiel, V. (2005a) Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 227: 18–30.CrossRefGoogle Scholar
  23. Reitner, J., Peckmann, J., Reimer, A., Schumann, G. and Thiel, V. (2005b) Methane-derived carbonate build-ups and associated microbial communities at cold seeps on the lower Crimean shelf (Black Sea). Facies 51: 71–84.CrossRefGoogle Scholar
  24. Romeis, B. (1989) Mikroskopische Technik. Urban und Schwarzenberg, München.Google Scholar
  25. Thiel, V., Peckmann, J., Richnow, H.H., Luth, U., Reitner, J. and Michaelis, W. (2001) Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat. Mar. Chem. 73: 97–112.CrossRefGoogle Scholar
  26. Valentine, D.L. (2002) Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. Antonie van Leeuwenhoek 81: 271–282.PubMedCrossRefGoogle Scholar
  27. Wrede, C., Heller, C., Reitner, J. and Hoppert, M. (2008) Correlative light/electron microscopy for the investigation of microbial mats from Black Sea colds. J. Microsc. Meth. 73: 85–91.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.GeobiologyUniversity of GöttingenGöttingenGermany

Personalised recommendations