Advertisement

What are Microbial Mats?

  • Gisela Gerdes
Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 14)

Abstract

Awareness of biofilms and microbial mats is not a modern attribute (see, in this context, Krumbein, 1993, 1994; Krumbein et al., 2003). Slippery surfaces, mucilage-embedded organic films, plaques, or rock patina may have not only stimulated olfactory, tactile, and visual senses, but also initiated questions about reasons. Today, various fields in biology, chemistry, medicine, geology, paleontology, and finally astrobiology share interest in biofilms and microbial mats. Their wealth of scientific questions results in a choice of definitions.

Keywords

Filamentous Cyanobacterium Taxic Diversity Open Space Structure Microcoleus Chthonoplastes Early Life Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aharon, P. (2000) Microbial processes and products fueled by hydrocarbons at submarine seeps, In: R.E. Riding and S.M. Awramik (eds.) Microbial Sediments. Springer, Berlin, pp. 270–281.Google Scholar
  2. Altermann, W., Kazmierczak, J., Oren, A. and Wright, D. (2006) Microbial calcification and its impact on the sedimentary rock record during 3.5 billion years of earth history. Geobiology 1: 169–178.Google Scholar
  3. Bauld, J. (1984) Microbial mats in marginal marine environments: Shark Bay, Western Australia and Spencer Gulf, South Australia, In: Y. Cohen, R.W. Castenholz and H.O. Halvorson (eds.) Microbial Mats: Stromatolites. Alan R. Liss, New York, pp. 39–58.Google Scholar
  4. Bouougri, E. and Porada, H. (2007) Complex structures associated with siliciclastic biolaminites, In: J. Schieber, P.K. Bose, P.G. Eriksson, S. Banerjee, S. Sarkar, W. Altermann and O. Catuneanu (eds.) Atlas of Microbial Mat Features Preserved Within the Siliciclastic Rock Record. Atlases in Geosciences 2. Elsevier, Amsterdam, pp. 111–115.Google Scholar
  5. Bouougri, E., Gerdes, G. and Porada, H. (2007) Inherent problems of terminology: definition of terms frequently used in connection with microbial mats, In: J. Schieber, P.K. Bose, P.G. Eriksson, S. Banerjee, S. Sarkar, W. Altermann and O. Catuneanu (eds.) Atlas of Microbial Mat Features Preserved Within the Siliciclastic Rock Record. Atlases in Geosciences 2. Elsevier, Amsterdam, pp. 145–151.Google Scholar
  6. Brehm, U., Gasiewicz, A., Gerdes, G. and Krumbein, W.E. (2002) Biolaminoid facies in a peritidal sabkha: Permian Platy Dolomite of northern Poland. Int. J. Earth Sci. 91: 260–271.CrossRefGoogle Scholar
  7. Browne, K.M., Golubic, S. and Seong-Joo, L. (2000) Shallow marine microbial carbonate deposits, In: R.E. Riding and S.M. Awramik (eds.) Microbial Sediments. Springer, Berlin, pp. 233–249.Google Scholar
  8. Castenholz, R.W., Jørgensen, B.B., D’Amelio, E. and Bauld, J. (1991) Photosynthetic and behavioural versatility of the cyanobacterium Oscillatoria boryana in a sulfide-rich microbial mat. FEMS Microbiol. Ecol. 86: 43–58.CrossRefGoogle Scholar
  9. Characklis, W.G. and Wilderer, P.A. (1989) Structure and Function of Biofilms. Dahlem Workshop Reports. Life Sciences Research Report 46. Wiley, Chichester, 386 pp.Google Scholar
  10. Cohen, Y. (1989) Photosynthesis in cyanobacterial mats and its relation to the sulfur cycle: a model for microbial sulfur interactions, In: Y. Cohen and E. Rosenberg (eds.) Microbial Mats – Physiological Ecology of Benthic Microbial Communities. ASM, Washington, DC, pp. 22–36.Google Scholar
  11. Cooksey, K.E. (1992) Extracellular polymers in biofilms, In: L.F. Melo, T.R. Bott, M. Fletcher and B. Capdeville (eds.) Biofilms – Science and Technology. Kluwer, Dordrecht, pp. 137–147.CrossRefGoogle Scholar
  12. Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R. and Lappin-Scott, H.M. (1995) Microbial biofilms. Ann. Rev. Microbiol. 49: 711–745.CrossRefGoogle Scholar
  13. Dade, W.B., Davis, J.D., Nichols, P.D., Nowell, A.R.M., Thistle, D., Trexler, M.B. and White, D.C. (1990) Effects of bacterial exopolymer adhesion on the entrainment of sand. Geomicrobiol. J.8: 1–16.CrossRefGoogle Scholar
  14. Decho, A.W. (2000) Exopolymer microdomains as a structuring agent for heterogeneity within microbial biofilms, In: R.E. Riding and S.M. Awramik (eds.) Microbial Sediments. Springer, Berlin, pp. 9–15.Google Scholar
  15. Eriksson, P.G., Schieber, J., Bouougri, E., Gerdes, G., Porada, H., Banerjee, S., Bose, P.K. and Sarkar, S. (2007) Classification of structures left by microbial mats in their host sediments, In: J. Schieber, P.K. Bose, P.G. Eriksson, S. Banerjee, S. Sarkar, W. Altermann and O. Catuneanu (eds.) Atlas of Microbial Mat Features Preserved Within the Siliciclastic Rock Record. Atlases in Geosciences 2. Elsevier, Amsterdam, pp. 39–52.Google Scholar
  16. Flügel, E. (2004) Microfacies of Carbonate Rocks. Springer, Berlin, 976 pp.Google Scholar
  17. Friedman G.M., Sanders J.E. and Kopaska-Merkel, D. (1992) Principles of Sedimentary Deposits. MacMillan, New York, 717 pp.Google Scholar
  18. Gasiewicz, A., Gerdes, G. and Krumbein, W.E. (1987) The peritidal sabkha type stromatolites of the Platy Dolomite (Ca3) of the Leba elevation (northern Poland). Lect. Notes Earth Sci. 10: 253–272.CrossRefGoogle Scholar
  19. Gehling, J.G. (1991) The case for Ediacaran fossil roots to the metazoan tree. Geol. Soc. India Mem. 20: 181–224.Google Scholar
  20. Gerdes, G. (2007) Structures left by modern microbial mats in their host sediments, In: J. Schieber, P.K. Bose, P.G. Eriksson, S. Banerjee, S. Sarkar, W. Altermann and O. Catuneanu (eds.) Atlas of Microbial Mat Features Preserved Within the Siliciclastic Rock Record. Atlases in Geosciences 2. Elsevier, Amsterdam, pp. 5–38.Google Scholar
  21. Gerdes, G. and Klenke, T. (2003) Geologische Bedeutung ökologischer Zeiträume in biogener Schichtung (Mikrobenmatten, potentielle Stromatolithe). Mitteilung der Gesellschaft für Geologie und Bergbaustudien. Österr. 46: 35–49.Google Scholar
  22. Gerdes, G. and Klenke, T. (2007) States of biogenic bedding as records of the interplay of ecologic time and environment. Senckenbergiana Maritima 37: 129–144.CrossRefGoogle Scholar
  23. Gerdes, G., Krumbein, W.E. and Holtkamp, E. (1985) Salinity and water activity related zonation of microbial communities and potential stromatolites of the Gavish Sabkha, In: G.M. Friedman and W.E. Krumbein (eds.) Hypersaline Ecosystems. The Gavish Sabkha. Springer, Berlin, pp. 238–266.CrossRefGoogle Scholar
  24. Gerdes, G., Dunajtschik-Piewak, K., Riege, H., Taher, A.G., Krumbein, W.E. and Reineck, H.E. (1994) Structural diversity of biogenic carbonate particles in microbial mats. Sedimentology 41: 1273–1294.CrossRefGoogle Scholar
  25. Gerdes, G., Klenke, T. and Noffke, N. (2000) Microbial signatures in peritidal siliciclastic sediments, a catalogue. Sedimentology 47: 279–308.CrossRefGoogle Scholar
  26. Hagadorn, J.W. and Bottjer, D.J. (1997) Wrinkle structures: microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic–Phanerozoic transition. Geology 25: 1047–1050.CrossRefGoogle Scholar
  27. Jørgensen, B.B. and Des Marais, D.J. (1986) Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats. FEMS Microbiol. Ecol. 38: 179–186.PubMedCrossRefGoogle Scholar
  28. Kropp, J., von Bloh, W. and Klenke, T. (1996) Calcite formation in microbial mats: modeling and quantification of inhomogeneous distribution patterns by cellular automation model and multifractal measures. Geol. Rundschau 85: 857–863.CrossRefGoogle Scholar
  29. Krumbein, W.E. (1983) Stromatolites – the challenge of a term in space and time. Precambrian Res. 20: 493–531.CrossRefGoogle Scholar
  30. Krumbein, W.E. (1993) Paracelsus und die mucilaginischen Substanzen – 500 Jahre EPS-Forschung. DGM-Mitteilungen 1993: 8–14.Google Scholar
  31. Krumbein, W.E. (1994) The year of the slime, In: W.E. Krumbein, D.M. Paterson and L.J. Stal (eds.) Biostabilization of Sediments. Bibliotheks- und Informationssystem BIS, Oldenburg, pp. 1–7.Google Scholar
  32. Krumbein, W.E. (1996). Geophysiology and parahistology of the interactions of organisms with the environment. P.S.Z.N.I: Mar. Ecol. 17: 1–21.CrossRefGoogle Scholar
  33. Krumbein, W.E., Brehm, U., Gorbushina, A.A., Levit, G. and Palinska, K.A. (2003) Biofilm, biodictyon and biomat – biolaminites, oolites, stromatolites – geophysiology, global mechanism and parahistology, In: W.E. Krumbein, D.M. Paterson and G.A. Zavarzin (eds.) Fossil and Recent Biofilms. Kluwer, Dordrecht, pp. 1–27.Google Scholar
  34. Neu, T.R. (1994) Biofilms and microbial mats, In: W.E. Krumbein, D.M. Paterson and L.J. Stal (eds.) Biostabilization of Sediments. Bibliotheks-Informationssystem BIS, Oldenburg, pp. 9–16.Google Scholar
  35. Neu, T.R. and Marshall, K.C. (1990) Bacterial polymers: physicochemical aspects of their interaction at interfaces. J. Biomat. Appl. 5: 107–133.CrossRefGoogle Scholar
  36. Neu, T.R., Eitner, A. and Paje, M.L. (2003) Development and architecture of complex environmental biofilms, In: W.E. Krumbein, D.M. Paterson and G.A. Zavarzin (eds.) Fossil and Recent Biofilms. Kluwer, Dordrecht, pp. 29–45.Google Scholar
  37. Noffke, N. (2007) Microbially-induced sedimentary structures (MISS) of early and middle Archaean Ages – Moodies Group, Pongola Supergroup, Witwatersrand Supergroup (South Africa), In: J. Schieber, P.K. Bose, P.G. Eriksson, S. Banerjee, S. Sarkar, W. Altermann and O. Catuneanu (eds.) Atlas of Microbial Mat Features Preserved Within the Siliciclastic Rock Record. Atlases in Geosciences 2. Elsevier, Amsterdam, pp. 153–157.Google Scholar
  38. Noffke, N. and Krumbein, W.E. (1999) A quantitative approach to sedimentary surface structures contoured by the interplay of microbial colonization and physical dynamics. Sedimentology 46: 417–426.CrossRefGoogle Scholar
  39. Oschmann, W. (2000) Microbes and black shales, In: R.E. Riding and S.M. Awramik (eds.) Microbial Sediments. Springer, Berlin, pp. 137–148.Google Scholar
  40. Palmisano, A.C., Cronin, S.E., D’Amelio, E.D., Munoz, E. and Des Marais, D.J. (1989) Distribution and survival of lipophilic pigments in a laminated microbial mat community near Guerrero Negro, Mexico, In: Y. Cohen and E. Rosenberg (eds.) Microbial Mats – Physiological Ecology of Bethic Microbial Communities. ASM, Washington, DC, pp. 138–152.Google Scholar
  41. Porada, H. and Bouougri, E. (2007) Wrinkle structures – a critical review, In: J. Schieber, P.K. Bose, P.G. Eriksson, S. Banerjee, S. Sarkar, W. Altermann and O. Catuneanu (eds.) Atlas of Microbial Mat Features Preserved Within the Siliciclastic Rock Record. Atlases in Geosciences 2. Elsevier, Amsterdam, pp. 135–144.Google Scholar
  42. Porada, H., Bouougri, E. and Ghergut, J. (2007) Hydraulic conditions and mat-related structures in tidal flats and coastal sabkhas, In: J. Schieber, P.K. Bose, P.G. Eriksson, S. Banerjee, S. Sarkar, W. Altermann and O. Catuneanu (eds.) Atlas of Microbial Mat Features Preserved Within the Siliciclastic Rock Record. Atlases in Geosciences 2. Elsevier, Amsterdam, pp. 258–265.Google Scholar
  43. Reimers, C.E., Kastner, M. and Garrison, R.E. (1990) The role of bacterial mats in phosphate mineralization with particular reference to the monterey formation, In: W.C. Burnett and S.R. Riggs (eds.) Phosphate Deposits of the World. Vol. 3. Neogene to Modern Phosphorites. Cambridge University Press, Cambridge, pp. 300–311.Google Scholar
  44. Reineck, H.-E., Gerdes, G., Claes, M., Dunajtschik, K., Riege, H. and Krumbein, W.E. (1990) Microbial modification of sedimentary surface structures, In: D. Heling, P. Rothe, U. Förstner and P. Stoffers (eds.) Sediments and Environmental Geochemistry . Springer, Berlin, pp. 254–276.CrossRefGoogle Scholar
  45. Riding, R. (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47: 179–214.CrossRefGoogle Scholar
  46. Rouchy, J.M. and Monty, C. (2000) Gypsum microbial sediments: neogene and modern examples, In: R.E. Riding and S.M. Awramik (eds.) Microbial Sediments. Springer, Berlin, pp. 209–216.Google Scholar
  47. Schieber, J. (1986) The possible role of benthic microbial mats during the formation of carbonaceous shales in shallow Proterozoic basins. Sedimentology 33: 521–536.CrossRefGoogle Scholar
  48. Schieber, J. (2007) Flume experiments on the durability of sandy microbial mat fragments during transport, In: J. Schieber, P.K. Bose, P.G. Eriksson, S. Banerjee, S. Sarkar, W. Altermann and O. Catuneanu (eds.) Atlas of Microbial Mat Features Preserved Within the Siliciclastic Rock Record. Atlases in Geosciences 2. Elsevier, Amsterdam, pp. 248–257.Google Scholar
  49. Schieber, J., Bose, P.K., Eriksson, P.G., Banerjee, S., Sarkar, S., Altermann, W. and Catuneanu, O. (eds.) (2007) Atlas of Microbial Mat Features Preserved Within the Siliciclastic Rock Record. Atlases in Geoscience 2. Elsevier, Amsterdam, 311 p.Google Scholar
  50. Schulz, E. (1937) Das Farbstreifen-Sandwatt und seine Fauna, eine ökologisch-biozönotische Untersuchung an der Nordsee. Meereskundl. Arb. Univ. Kiel 1: 359–378.Google Scholar
  51. Simon, R.D. (1984) Evolution of the microbial mat community: problems and technological solutions, In: Y. Cohen, R.W. Castenholz and H.O. Halvorson (eds.) Microbial Mats: Stromatolites. Alan R. Liss, New York, pp. 437–447.Google Scholar
  52. Stal, L.J. (1994) Microbial mats: ecophysiological interactions related to biogenic sediment stabilization, In: W.E. Krumbein, D.M. Paterson and L.J. Stal (eds.) Biostabilization of Sediments. University of Oldenburg, BIS Oldenburg, pp. 41–53.Google Scholar
  53. Stolz, J. (1984) Fine structure of the stratified microbial community at Laguna Figueroa, Baja California, Mexico: II. Transmission electron microscopy as a diagnostic tool in studying microbial communities in situ, In: Y. Cohen, R.W. Castenholz and H.O. Halvorson (eds.) Microbial Mats: Stromatolites. Alan R. Liss, New York, pp. 23–38.Google Scholar
  54. Stolz, J. (2000) Structure of microbial mats and biofilms, In: R.E. Riding and S.M. Awramik (eds.) Microbial Sediments. Springer, Berlin, pp. 1–8.Google Scholar
  55. Stoodley, P., Lewandowski, Z., Boyle, J.D. and Lappin-Scott, H.M. (1999) The formation of migratory ripples in a mixed species bacterial biofilm growing in turbulent flow. Environ. Microbiol. 1: 447–457.PubMedCrossRefGoogle Scholar
  56. Thiel, V., Peckmann, J., Richnow, H.H., Luth, U., Reitner, J. and Michaelis, W. (2001) Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat. Mar. Chem. 73: 97–112.CrossRefGoogle Scholar
  57. van Gemerden, H. (1993) Microbial mats: a joint venture, In: R.J. Parkes, P. Westbroek and J.W. de Leeuw (eds.) Marine Sediments, Burial, Pore Water Chemistry, Microbiology and Diagenesis. Mar. Geol. 113: 3–25.Google Scholar
  58. Verrecchia, E.P. (2000) Fungi and sediments, In: R.E. Riding and S.M. Awramik (eds.) Microbial Sediments. Springer, Berlin, pp. 68–75.Google Scholar
  59. Wachendörfer, V., Krumbein, W.E. and Schellnhuber, H.-J. (1994) Bacteriogenic porosity of marine sediments – a case of biomorphogenesis of sedimentary rocks, In: W.E. Krumbein, D.M. Paterson and L.J. Stal (eds.) Biostabilization of Sediments. Bibliotheks-Informationssystem BIS, Oldenburg, pp. 203–220.Google Scholar
  60. Zavarzin, G.A. (2003) Diversity of cyano-bacterial mats, In: W.E. Krumbein, D.M. Paterson and G.A. Zavarzin (eds.) Fossil and Recent Biofilms. Kluwer, Dordrecht, pp. 141–150.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Marine Sciencec/o Senckenberg Research InstituteWilhelmshavenGermany

Personalised recommendations