Introduction to Group Analysis of Differential Equations

  • Yurii N. Grigoriev
  • Nail H. Ibragimov
  • Vladimir F. Kovalev
  • Sergey V. Meleshko
Part of the Lecture Notes in Physics book series (LNP, volume 806)

Abstract

The first chapter is a brief, but a sufficiently comprehensive introduction to the methods of Lie group analysis of ordinary and partial differential equations. The chapter presents basic concepts from the theory: continuous transformation groups, their generators, Lie equations, groups admitted by differential equations, integration of ordinary differential equations using their symmetries, group classification and invariant solutions of partial differential equations. New trends in modern group analysis such as the theory of Lie–Bäcklund transformations groups and approximate groups are also reflected. The intention of the chapter is to give the basic ideas of classical and modern group analysis to beginner readers and provide useful materials for advanced specialists.

Keywords

Riccati Equation Canonical Variable Burger Equation Determine Equation Invariant Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bäcklund, A.V.: Ueber Flächentransformationen. Math. Ann. IX, 297–320 (1876) Google Scholar
  2. 2.
    Baikov, V.A., Gazizov, R.K., Ibragimov, N.H.: Approximate symmetries. Math. Sb. 136(178)(3), 435–450 (1988). English transl.: Math. USSR Sb. 64(2), (1989) Google Scholar
  3. 3.
    Ibragimov, N.H.: Sur l’équivalence des équations d’évolution, qui admettent une algébre de Lie–Bäcklund infinie. C. R. Acad. Sci. Paris Sér. I 293, 657–660 (1981) MATHGoogle Scholar
  4. 4.
    Ibragimov, N.H.: Transformation Groups in Mathematical Physics. Nauka, Moscow (1983). English transl.: Transformation Groups Applied to Mathematical Physics. Riedel, Dordrecht (1985) MATHGoogle Scholar
  5. 5.
    Ibragimov, N.H.: Group analysis of ordinary differential equations and the invariance principle in mathematical physics (for the 150th anniversary of Sophus Lie). Usp. Mat. Nauk 47(4), 83–144 (1992) English transl.: Russ. Math. Surv. 47(2), 89–156 (1992) MATHGoogle Scholar
  6. 6.
    Ibragimov, N.H. (ed.): CRC Handbook of Lie Group Analysis of Differential Equations, vol. 2: Applications in Engineering and Physical Sciences. CRC Press, Boca Raton (1995) MATHGoogle Scholar
  7. 7.
    Ibragimov, N.H. (ed.): CRC Handbook of Lie Group Analysis of Differential Equations, vol. 3: New Trends in Theoretical Developments and Computational Methods. CRC Press, Boca Raton (1996) Google Scholar
  8. 8.
    Ibragimov, N.H.: Elementary Lie Group Analysis and Ordinary Differential Equations. Wiley, Chichester (1999) MATHGoogle Scholar
  9. 9.
    Ibragimov, N.H. (ed.): Lie Group Analysis: Classical Heritage. ALGA Publications, Karlskrona (2004) Google Scholar
  10. 10.
    Ibragimov, N.H.: A Practical Course in Differential Equations and Mathematical Modelling, 3rd edn. ALGA Publications, Karlskrona (2006) Google Scholar
  11. 11.
    Ibragimov, N.H.: Optimal system of invariant solutions for the Burgers equation. In: Lecture at the MOGRAN-12 Conference, Porto, July 28–31, 2008 Google Scholar
  12. 12.
    Lie, S.: Über die Integration durch bestimmte Integrale von einer Klasse linearer partieller Differentialgleichungen. Arch. Math. 6(3), 328–368 (1881). English transl. in: Ibragimov, N.H. (ed.) CRC Handbook of Lie Group Analysis of Differential Equations, vol. 2: Applications in Engineering and Physical Sciences. CRC Press, Boca Raton (1995). Reprinted also in: Ibragimov, N.H. (ed.) Lie Group Analysis: Classical Heritage. ALGA Publications, Karlskrona (2004) MATHGoogle Scholar
  13. 13.
    Lie, S.: Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen. Bearbeited und herausgegeben von Dr. G. Scheffers. Teubner, Leipzig (1891) MATHGoogle Scholar
  14. 14.
    Olver, F.W.J.: Asymptotics and Special Functions. Academic Press, San Diego (1974) Google Scholar
  15. 15.
    Olver, P.J.: Applications of Lie Groups to Differential Equations, Springer, New York (1986). 2nd edn. (1993) MATHCrossRefGoogle Scholar
  16. 16.
    Ovsyannikov, L.V.: Group Properties of Differential Equations. Siberian Branch, USSR Academy of Sciences, Novosibirsk (1962) (in Russian) Google Scholar
  17. 17.
    Polyanin, A.D., Zaitsev, V.F.: Handbook of Exact Solutions for Ordinary Differential Equations. CRC Press, Boca Raton (1995) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Yurii N. Grigoriev
    • 1
  • Nail H. Ibragimov
    • 2
  • Vladimir F. Kovalev
    • 3
  • Sergey V. Meleshko
    • 4
  1. 1.Inst. Computational TechnologiesRussian Academy of SciencesNovosibirskRussia
  2. 2.Dept. Mathematics & ScienceBlekinge Institute of TechnologyKarlskronaSweden
  3. 3.Inst. Mathematical ModellingRussian Academy of SciencesMoscowRussia
  4. 4.School of Mathematics, Institute of ScienceSuranaree University of Technology (SUT)Nakhon RatchasimaThailand

Personalised recommendations