Red Algal Defenses in the Genomics Age

  • Florian Weinberger
  • Philippe Potin
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 13)


Marine red algae are important organisms from both an ecological and an economical point of view. In most subtidal or intertidal habitats, their extremely high diversity contributes to the functioning of the ecosystems, and in coral reef ecosystems, coralline red algae play a major role in reef building. Red algae have also provided the resources to establish a fruitful aquaculture in Far East Asia, first in Japan with the development of nori cultivation since the eighteenth century and most recently in the Philippines, Indonesia and East Africa, with the farming of carrageenophytes Eucheuma and Kappaphycus) promoted by Maxwell Doty during the 1970s (Ask and Azanza, 2002).


NADPH Oxidase Oxidative Burst Acylated Homoserine Lactone Divinyl Ether Cell Wall Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agrawal, A.A. and Karban, R. (1999) Why induced defenses may be favoured over constitutive strategies in plants, In: R. Tollrian and C.D. Harvell (eds.) The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton, NJ, pp. 45–61.Google Scholar
  2. Akakabe, Y., Matsui, K. and Kajiwara, T. (2000) Alpha-oxidation of long-chain unsaturated fatty acids in the marine green alga Ulva pertusa. Biosci. Biotechnol. Biochem. 64: 2680–2681.PubMedGoogle Scholar
  3. Ankisetty, S., Nandiraju, S., Win, H., Park, Y.C., Amsler, C.D., McClintock, J.B., Baker, J.A., Diyabalanage, T.K., Pasaribu, A., Singh, M.P., Maiese, W.M., Walsh, R.D., Zaworotko, R.J. and Baker, B.J. (2004) Chemical investigation of predator-deterred macroalgae from the Antarctic Peninsula. J. Nat. Prod. 67 : 1295–1302.PubMedGoogle Scholar
  4. Armstrong, E., Yan, L.M., Boyd, K.G., Wright, P.C. and Burgess, J.G. (2001) The symbiotic role of marine microbes on living surfaces. Hydrobiologia 461: 37–40.Google Scholar
  5. Asamizu, E., Nakajima, M., Kitade, Y., Saga, N., Nakamura, Y. and Tabata, S. (2003) Comparison of RNA expression profiles between the two generations of Porphyra yezoensis (Rhodophyta), based on Expressed Sequence Tag frequency analysis. J. Phycol. 39: 923–930.Google Scholar
  6. Ask, E.I. and Azanza, R.V. (2002) Advances in cultivation technology of commercial eucheumatoid species: a review with suggestions for future research. Aquaculture 206: 257–277.Google Scholar
  7. Barrow, K.D. and Temple, C.A. (1985) Biosynthesis of halogenated monoterpenes in Plocamium cartilagineum. Phytochemistry 24: 1697–1704.Google Scholar
  8. Boonprab, K., Matsui, K., Akakabe, Y., Yotsukura, N. and Kajiwara, T. (2003) Hydroperoxy-arachidonic acid mediated n-hexanal and (Z)-3- and (E)-2-nonenal formation in Laminaria angustata. Phytochemistry 63: 669–678.PubMedGoogle Scholar
  9. Bouarab, K., Potin, P., Correa, J. and Kloareg, B. (1999) Sulfated oligosaccharides mediate the interaction between a marine red alga and its green algal pathogenic endophyte. Plant Cell 11: 1635–1650.PubMedGoogle Scholar
  10. Bouarab, K., Adas, F., Gaquerel, E., Kloareg, B., Salaün, J.-P. and Potin, P. (2004) The innate immunity of a marine red alga involves oxylipins from both the eicosanoid and octadecanoid pathways. Plant Physiol. 135: 1838–1848.PubMedGoogle Scholar
  11. Butler, A. and Carter-Franklin, J.N. (2004) The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products. Nat. Prod. Rep. 21: 180–188.PubMedGoogle Scholar
  12. Cacas, J.-L., Vailleau, F., Davoine, C., Ennar, N., Agnel, J.-P., Tronchet, M., Ponchet, M., Blein, J.-P., Roby, D., Triantaphylidès, C. and Montillet, J.-L. (2005) The combined action of 9 lipoxygenase and galactolipase is sufficient to bring about programmed cell death during tobacco hypersensitive response. Plant Cell Environ. 28: 1367–1378.Google Scholar
  13. Ceh, J., Molis, M., Dzeha, T.M. and Wahl, M. (2005) Induction and reduction of anti-herbivore defenses in brown and red macroalgae off the Kenyan coast. J. Phycol. 41: 726–731.Google Scholar
  14. Collén, J., Hervé, C., Guisle-Marsollier, I., Léger, J.J. and Boyen, C. (2006a) Expression profiling of Chondrus crispus (Rhodophyta) after exposure to methyl jasmonate. J. Exp. Bot. 57: 3869–3881.PubMedGoogle Scholar
  15. Collén, J., Roeder, V., Rousvoal, S., Collin, O., Kloareg, B. and Boyen, C. (2006b) An expressed sequence tag analysis of thallus and regenerating protoplasts of Chondrus crispus (Gigartinales, Rhodophyceae). J. Phycol. 42: 104–112.Google Scholar
  16. Correa, J.A. (1996) Infectious diseases of marine algae: current knowledge and approaches, In: F.E. Round and D.J. Chapman (eds.) Progress in Phycological Research. Biopress, Bristol, pp. 149–180.Google Scholar
  17. Correa, J. and Flores, V. (1995) Whitening, thallus decay and fragmentation in Gracilaria chilensis associated with an endophytic amoeba. J. Appl. Phycol. 7: 421–425.Google Scholar
  18. Correa, J.A. and McLachlan, J.L. (1991) Endophytic algae of Chondrus crispus (Rhodophyta). III. Host specificity. J. Phycol. 27: 448–459.Google Scholar
  19. Correa, J., Buschmann, A.H., Retamales, C. and Beltran, J. (1997) Infectious diseases of Mazzaella laminarioides (Rhodophyta): changes in infection prevalence and disease expression associated with season, locality, and within-site location. J. Phycol. 33: 344–352.Google Scholar
  20. Cosse, A., Leblanc, C. and Potin, P. (2008) Dynamic defense of marine macroalgae against pathogens: from early activated to gene-regulated responses. Adv. Bot. Res. 46: 221–266.Google Scholar
  21. Coupe, E.E., Smyth, M.G., Fosberry, A.P., Hall, R.M. and Littlechild, J.A. (2007) The dodecameric vanadium-dependent haloperoxidase from the marine algae Corallina officinalis: cloning, expression, and refolding of the recombinant enzyme. Protein Expr. Purif. 52: 265–272.PubMedGoogle Scholar
  22. Craigie, J.S. and Correa, J. (1996) Etiology of infectious diseases in cultivated Chondrus crispus (Gigartinales, Rhodophyta). Proc. Int. Seaweed Symp. 15: 97–104.Google Scholar
  23. Cyr, H. and Pace, M. (1993) Magnitude and patterns of of herbivory in aquatic and terrestrial ecosystems. Nature 361: 148–150.Google Scholar
  24. de Nys, R., Steinberg, P., Willemsen, P., Dworjanyn, S.A., Gabelish, C.L. and King, R.J. (1995) Broad spectrum effects of secondary metabolites from the red alga Delisea pulchra in antifouling assays. Biofouling 8: 259–271.Google Scholar
  25. de Nys, R., Steinberg, P., Rogers, C.N., Charlton, T.S. and Duncan, M.W. (1996a) Quantitative variation of secondary metabolites in the sea hare Aplysia parvula and its host plant, Delisea pulchra. Mar. Ecol. Prog. Ser. 130: 135.Google Scholar
  26. de Nys, R., Leya, T., Maximilien, R., Asfar, A., Nair, P.S. and Steinberg, P.D. (1996b) The need for standardised broad scale bioassay testing: a case study using the red alga Laurencia rigida. Biofouling 10: 213–224.PubMedGoogle Scholar
  27. Diaz, E., Güldenzoph, C., Molis, M., McQuaid, C. and Wahl, M. (2006) Variability in grazer-mediated defensive responses of green and red macroalgae on the South coast of South Africa. Mar. Biol. 149: 1301–1311.Google Scholar
  28. Dobretsov, S.V. and Qian, P.-Y. (2002) Effect of bacteria associated with the green alga Ulva reticulata on marine micro- and macrofouling. Biofouling 18: 217–228.Google Scholar
  29. Dring, M.J. (2005) Stress resistance and disease resistance in seaweeds: the role of reactive oxygen metabolism. Adv. Bot. Res. 43: 175–207.Google Scholar
  30. Dworjanyn, S.A., de Nys, R. and Steinberg, P.D. (1999) Localisation and surface quantification of secondary metabolites in the red alga Delisea pulchra. Mar. Biol. 133: 727–736.Google Scholar
  31. Dworjanyn, S.A., de Nys, R. and Steinberg, P.D. (2006) Chemically mediated antifouling in the red alga Delisea pulchra. Mar. Ecol. Prog. Ser. 318: 153–163.Google Scholar
  32. Fan, X.-L., Fang, Y.-J., Hu, S.-N. and Wang, G.-G. (2007) Generation and analysis of 5318expressed sequence tags from the filamentous sporophyte of Porphyra haitanensis (Rhodophyta). J. Phycol. 43: 1287–1294.Google Scholar
  33. Farmer, E.E. and Davoine, C. (2007) Reactive electrophile species. Curr. Opin. Plant Biol. 10: 380–386.PubMedGoogle Scholar
  34. Faugeron, S., Martinez, E.A., Sanchez, P. and Correa, J. (2000) Infectious diseases in Mazzaella laminarioides (Rhodophyta): estimating the effect of infections on host reproductive potential. Dis. Aquat. Org. 42: 143–148.PubMedGoogle Scholar
  35. Friedlander, M., Gonen, Y., Kashman, Y. and Beer, S. (1996) Gracilaria conferta and its epiphytes: 3. Allelopathic inhibition of the red seaweed by Ulva cf. lactuca. J. Appl. Phycol. 8: 21–25.Google Scholar
  36. Fujita, Y. (1990) Diseases of cultivated Porphyra in Japan, In: I. Akatsuka (ed.) Introduction to Applied Phycology. SPB Academic, The Hague, The Netherlands, pp. 177–190.Google Scholar
  37. Gaquerel, E., Hervé, C., Labrière, C., Boyen, C., Potin, P. and Salaün, J.-P. (2007) Evidence for oxylipin synthesis and induction of a new polyunsaturated fatty acid hydroxylase activity in Chondrus crispus in response to methyljasmonate. Biochim. Biophys. Acta 1771: 565–575.PubMedGoogle Scholar
  38. Garson, M.J. (2001) Ecological perspectives on marine natural product biosynthesis, In: J.B. McClintock and B.J. Baker (eds.) Marine Chemical Ecology. CRC Press, Boca Raton, FL, pp. 71–114.Google Scholar
  39. Gaut, J.P., Yeh, G.C., Tran, H.D., Byun, J., Henderson, J.P., Richter, G.M., Brennan, M.L., Lusis, A.J., Belaaouaj, A., Hotchkiss, A.S. and Heinecke, J.W. (2001) Neutrophils employ the myeloperoxidase system to generate antimicrobial brominating and chlorinating oxidants during sepsis. Proc. Natl. Acad. Sci. 98: 11961–11966.PubMedGoogle Scholar
  40. Hervé, C., Tonon, T., Collén, J., Corre, E. and Boyen, C. (2006) NADPH oxidases in Eukaryotes: red algae provide new hints! Curr. Gen. 49: 190–204.Google Scholar
  41. Howe, G.A. and Schilmiller, A.L. (2002) Oxylipin metabolism in response to stress. Curr. Opin. Plant Biol. 5: 230–236.PubMedGoogle Scholar
  42. Hurtado, A.Q., Critchley, A.T., Trespoey, A. and Bleicher Lhonneur, G. (2006) Occurence of Polysiphonia epiphytes in Kappaphycus farms at Calaguas Is., Camarines Norte, Philippines. J. Appl. Phycol. 18: 301–306.Google Scholar
  43. Jaffray, A.E., Anderson, R.J. and Coyne, V.E. (1997) Investigation of bacterial epiphytes of the agar-producing red seaweed Gracilaria gracilis (Stackhouse) Steentoft, Irvine et Farnham from Saldanha Bay, South Africa and Luderitz, Namibia. Bot. Mar. 40: 569–576.Google Scholar
  44. Joint, I., Tait, K., Callow, M.E., Callow, J.A., Milton, D., Williams, P. and Camara, M. (2002) Cell-to-cell communication across the prokaryote–eukaryote boundary. Science 298: 1207.PubMedGoogle Scholar
  45. Jormalainen, V. and Honkanen, T. (2008) Macroalgal chemical defenses and their roles in structuring temperate marine communities, In: C.D. Amsler (ed.) Algal Chemical Ecology. Springer, Berlin, Germany, pp. 57–90.Google Scholar
  46. Kamenarska, Z., Taniguchi, T., Ohsawa, N., Hiraoka, M. and Itoh, N. (2007) A vanadium-dependent bromoperoxidase in the marine red alga Kappaphycus alvarezii (Doty) Doty displays clear substrate specificity. Phytochemistry 68: 1358–1366.PubMedGoogle Scholar
  47. Karez, R., Engelbrecht, S. and Sommer, U. (2000) ‘Co-consumption’ and ‘protective coating’: two new proposed effects of epiphytes on their macroalgal hosts in mesograzer-epiphyte-host interactions. Mar. Ecol. Prog. Ser. 205: 85–93.Google Scholar
  48. Kessler, A. and Baldwin, I.T. (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu. Rev. Plant Biol. 53: 299–328.PubMedGoogle Scholar
  49. Kladi, M., Vagias, C. and Roussis, V. (2004) Volatile halogenated metabolites from marine red algae. Phytochem. Rev. 3: 337–366Google Scholar
  50. König, G.M., Wright, A.D. and de Nys, R. (1999) Halogenated monoterpenes from Plocamium costatum and their biological activity. J. Nat. Prod. (Lloydia) 62: 383–385.Google Scholar
  51. LaBarre, S.L., Weinberger, F., Kervarec, N. and Potin, P. (2004) Monitoring defensive responses in macroalgae: limitations and perspectives. Phytochem. Rev. 3: 371–379.Google Scholar
  52. Lam, C. and Harder, T. (2007) Marine macroalgae affect abundance and community richness of bacterioplancton in close vicinity. J. Phycol. 43: 874–881.Google Scholar
  53. Lam, C., Stang, A. and Harder, T. (2007) Planktonic bacteria and fungi are selectively eliminated by exposure to marine macroalgae in close proximity. FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2007.00426.x.Google Scholar
  54. Largo, D.B., Fukami, K. and Nishijima, T. (1995) Occasional pathogenic bacteria promoting ise-ice disease in the carrageenan-producing red algae Kappaphycus alvarezii and Eucheuma denticulatum (Solieriaceae, Gigartinales, Rhodophyta). J. Appl. Phycol. 7: 545–554.Google Scholar
  55. Lavilla-Pitogo, C.R. (1992) Agar-digesting bacteria associated with ‘rotten thallus syndrome’ of Gracilaria sp. Aquaculture 102: 1–7.Google Scholar
  56. Leblanc, C., Colin, C., Cosse, A., Delage, L., La Barre, S., Morin, P., Fiévet, B., Voiseux, C., Ambroise, Y., Verhaeghe, E., Amouroux, D., Donard, O., Tessier, E. and Potin, P. (2006) Iodine transfers in the coastal marine environment: the key role of brown algae and of their vanadium-dependent haloperoxidases. Biochimie 88: 1773–1785.PubMedGoogle Scholar
  57. Leonardi, P.I., Miravalles, A.B., Faugeron, S., Flores, V., Beltran, J. and Correa, J.A. (2006) Diversity, phenomenology and epidemiology of epiphytism in farmed Gracilaria chilensis (Rhodophyta) in northern Chile. Eur. J. Phycol. 41: 247–257.Google Scholar
  58. Lion, U., Wiesemeier, T., Weinberger, F., Beltrán, J., Flores, V., Faugeron, S., Correa, J. and Pohnert, G. (2006) Phospholipases and galactolipases trigger oxylipin-mediated wound-activated defence in the red alga Gracilaria chilensis against epiphytes. Chem. Biochem. 7: 457–462.Google Scholar
  59. Littlechild, J., Garcia-Rodriguez, E., Dalby, A. and Isupov, M. (2002) Structural and functional comparisons between vanadium haloperoxidase and acid phosphatase enzymes. J. Mol. Recognit. 15: 291–296.PubMedGoogle Scholar
  60. Littler, M.M. and Littler, D.S. (1995) Impact of CLOD pathogen on Pacific coral reefs. Science 267: 1356–1360.PubMedGoogle Scholar
  61. Liu, Q.Y. and Reith, M.E. (1994) Isolation of a gametophyte-specific cDNA encoding a lipoxygenase from the red alga Porphyra purpurea. Mol. Mar. Biol. Biotechnol. 3: 206–209.PubMedGoogle Scholar
  62. Manefield, M., de Nys, R., Kumar, N., Read, R., Givskov, M., Steinberg, P.D. and Kjelleberg, S. (1999) Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL) mediated gene expression by displacing the AHL signal from its receptor protein. Microbiol. 145: 283–291.Google Scholar
  63. Manefield, M., Rasmussen, T., Kumar, N., Hentzer, M., Anderson, J.B., Steinberg, P.D., Kjelleberg, S. and Givskov, M. (2002) Quorum sensing inhibition through accelerated degradation of the LuxR protein by halogenated furanones. Microbiol. 148: 1119–1127.Google Scholar
  64. Manley, S.L. (2002) Phytogenesis of halomethanes: a product of selection or a metabolic accident? Biogeochemistry 60: 163–180.Google Scholar
  65. Matsuo, Y., Imagawa, H., Nishizawa, M. and Shizuri, Y. (2005) Isolation of an algal morphogenesis inducer from a marine bacterium. Science 307: 1598.PubMedGoogle Scholar
  66. Maximilien, R., de Nys, R., Holmstrom, C., Gram, L., Kjelleberg, S. and Steinberg, P.D. (1998) Bacterial fouling is regulated by secondary metabolites from the red alga Delisea pulchra. Aquat. Microbiol. Ecol. 15: 233–246.Google Scholar
  67. Montillet, J.-L., Cacas, J.-L., Garnier, L., Montané, M.-H., Douki, T., Bessoule, J.J., Polkowska-Kowalczyk, L., Maciejewska, U., Agnel, J.-P., Vial, A. and Triantaphylidès, C. (2004) The upstream oxylipin profile of Arabidopsis thaliana. A tool to scan for oxidative stresses. Plant J. 40: 439–451.PubMedGoogle Scholar
  68. Mtolera, M.S.P., Collén, J., Pedersén, M., Ekdahl, A., Abrahamsson, K. and Semesi, A.K. (1996) Stress-induced production of volatile halogenated organic compounds in Eucheuma denticulatum (Rhodophyta) caused by elevated pH and high light intensities. Eur. J. Phycol. 31: 89–95.Google Scholar
  69. Neill, P.E., Alcalde, O., Faugeron, S., Navarrete, S.A. and Correa, J.A. (2006) Invasion of Codium fragile ssp. tomentosoides in northern Chile: a new threat for Gracilaria farming. Aquaculture 259: 202–210.Google Scholar
  70. Nylund, G.M. and Pavia, H. (2003) Inhibitory effects of red algal extracts on larval settlement of the barnacle Balanus improvisus. Mar. Biol. 143: 875–882.Google Scholar
  71. Nylund, G.M. and Pavia, H. (2005) Chemical versus mechanical inhibition of fouling in the red alga Dilsea carnosa. Mar. Ecol. Prog. Ser. 299: 111–121.Google Scholar
  72. Nylund, G.M., Cervin, G., Hermansson, M. and Pavia, H. (2005) Chemical inhibition of bacterial colonization by the red alga Bonnemaisonia hamifera. Mar. Ecol. Prog. Ser. 302: 27–36.Google Scholar
  73. Ohsawa, N., Ogata, Y., Okada, N. and Itoh, N. (2001) Physiological function of bromoperoxidase in the red marine alga, Corallina pilulifera: production of bromoform as an allelochemical and the simultaneous elimination of hydrogen peroxide. Phytochemistry 58: 683–692.PubMedGoogle Scholar
  74. Ohshiro, T., Hemrika, W., Aibara, T., Wever, R. and Izumi, Y. (2002) Expression of the vanadium-dependent bromoperoxidase gene from a marine macro-alga Corallina pilulifera in Saccharomyces cerevisiae and characterization of the recombinant enzyme. Phytochemistry 60: 595–601.PubMedGoogle Scholar
  75. Paul, V.J., Hay, M.E., Duffy, J.E., Fenical, W. and Gustavson, K. (1987) Chemical defense in the seaweed Ochtodes secundiramea (Montague) Howe (Rhodophyta): effects of its monoterpenoid components upon diverse coral-reef herbivores. J. Exp. Mar. Biol. Ecol. 114: 249–260.Google Scholar
  76. Paul, V.J., Cruz-Rivera, E. and Thacker, R.W. (2001) Chemical mediation of macroalga–herbivore interactions: ecological and evolutionary perspectives, In: J.B. McClintock and B.J. Baker (eds.) Marine Chemical Ecology. CRC Press, Boca Raton, FL, pp. 71–114.Google Scholar
  77. Paul, N.A., de Nys, R. and Steinberg, P.D. (2006a) Chemical defence against bacteria in the red alga Asparagopsis armata: linking structure with function. Mar. Ecol. Prog. Ser. 306: 87–101.Google Scholar
  78. Paul, N.A., de Nys, R. and Steinberg, P. (2006b) Seaweed–herbivore interactions at a small scale: direct tests of feeding deterrence by filamentous algae. Mar. Ecol. Prog. Ser. 323: 1–9.Google Scholar
  79. Paul, N.A., Cole, L., de Nys, R. and Steinberg, P. (2006c) Ultrastructure of the gland cells of the red alga Asparagopsis armata (Bonnemaisoniaceae). J. Phycol. 42: 637–645.Google Scholar
  80. Pedersén, M., Collén, J., Abrahamsson, K. and Ekdahl, A. (1996a) Production of halocarbons from seaweeds: an oxidative stress reaction? Sci. Mar. (Barc.) 60: 257–263.Google Scholar
  81. Pedersén, M., Collén, J., Abrahamsson, K., Mtolera, M., Semesi, A. and Garcia Reina, G. (1996b) The ice–ice disease and oxidative stress of marine algae, In: M. Björk, A.K. Semesi, M. Pedersén and B. Bergman (eds.) Current Trends in Marine Botanical Research in the East African Region. Ord & Vetande AB, Uppsala, Sweden, pp. 11–24.Google Scholar
  82. Pelletreau, K.N. and Targett, N.M. (2008) New perspectives for addressing patterns of secondary metabolites in marine macroalgae, In: C.D. Amsler (ed.) Algal Chemical Ecology. Springer, Berlin, pp. 121–146.Google Scholar
  83. Pereira, R.C., Da Gama, B.A.P., Teixeira, V.L. and Yoneshigue-Valentin, Y. (2003) Ecological roles of natural products of the Brazilian red seaweed Laurencia obtusa. Rev. Bras. Biol. 63: 665–672.Google Scholar
  84. Potin, P. (2008) Oxidative burst and related responses in biotic interactions of algae, In: C.D. Amsler (ed.) Algal Chemical Ecology. Springer, Berlin, pp. 245–271.Google Scholar
  85. Potin, P., Bouarab, K., Salaün, J.-P., Pohnert, G. and Kloareg, B. (2002) Biotic interactions of marine algae. Curr. Opin. Plant Biol. 5: 308–317.PubMedGoogle Scholar
  86. Puglisi, M.P. and Paul, V.J. (1997) Intraspecific variation in the red algae Portieria hornemannii: monoterpene concentrations are not influenced by nitrogen or phosphorus enrichment. Mar. Biol. 128: 161.Google Scholar
  87. Rohde, S. and Wahl, M. (2008) Antifeeding defense in Baltic macroalgae: induction by direct feeding versus waterborne cues. J. Phycol. 44: 85–90.Google Scholar
  88. Sanchez, P., Correa, J.A. and Garcia-Reina, G. (1996) Host-specificity of Endophyton ramosum (Chlorophyta), the causative agent of green patch disease in Mazzaella laminarioides (Rhodophyta). Eur. J. Phycol. 31: 173–179.Google Scholar
  89. Shah, J. (2005) Lipids, lipases, and lipid-modifiying enzymes in plant disease resistance. Annu. Rev. Phytopathol. 43: 229–260.PubMedGoogle Scholar
  90. Steinberg, P.D. and deNys, R. (2002) Chemical mediation of colonization of seaweed surfaces. J. Phycol. 38: 621–629.Google Scholar
  91. Steinberg, P.D., de Nys, R. and Kjelleberg, S. (1998) Chemical inhibition of epibiota by Australian seaweeds. Biofouling 12: 227–244.Google Scholar
  92. Tait, K., Joint, I., Daykin, M., Milton, D.L., Williams, P. and Camara, M. (2005) Disruption of quorum sensing in seawater abolishes attraction of zoospores of the green alga Ulva to bacterial biofilms. Environ. Microbiol. 7: 229–240.PubMedGoogle Scholar
  93. Teo, S.-S., Ho, C.-L., Toeoh, S., Lee, W.-W., Tee, J.-M., Rahim, R.A. and Phang, S.-M. (2007) Analyses of expressed sequence tags from an agarophyte, Gracilaria changii (Gracilariales, Rhodophyta). Eur. J. Phycol. 42: 41–46.Google Scholar
  94. Toth, G.B. (2007) Screening for induced herbivore resistance in Swedish intertidal seaweeds. Mar. Biol. 151: 1597–1604.Google Scholar
  95. Toth, G. and Pavia, H. (2007) Induced resistance in seaweeds: a meta-analysis. J. Ecol. 95: 425–434.Google Scholar
  96. Uppalapati, S.R. and Fujita, Y. (2000a) Carbohydrate regulation of attachment, ensystment, and appressorium formation by Pythium porphyrae (Oomycota) zoospores on Porphyra yezoensis (Rhodophyta). J. Phycol. 36: 359–366.Google Scholar
  97. Uppalapati, S.R. and Fujita, Y. (2000b) Red rot resistance in interspecific protoplast fusion product progeny of Porphyra yezoensis and P. tenuipedalis (Bangiales, Rhodophyta). Phycol. Res. 48: 281–289.Google Scholar
  98. Wahl, M. and Hay, M.E. (1995) Associational resistance and shared doom: effects of epibiosis on herbivory. Oecologia 102: 329–340.Google Scholar
  99. Walters, L.J., Hadfield, M.G. and Smith, C.M. (1996) Waterborne chemical compounds in tropical macroalgae: positive and negative cues for larval settlement. Mar. Biol. 126: 383–393.Google Scholar
  100. Weidner, K., Lages, B.G., da Gama, B.A.P., Molis, M., Wahl, M. and Pereira, R.C. (2004) Effect of mesograzers and nutrient levels on induction of defenses in several Brazilian macroalgae. Mar. Ecol. Prog. Ser. 283: 113–125.Google Scholar
  101. Weinberger, F. (2007) Pathogen-induced defense and innate immunity in macroalgae. Biol. Bull. 213: 290–302.PubMedGoogle Scholar
  102. Weinberger, F. and Friedlander, M. (2000a) Response of Gracilaria conferta (Rhodophyta) to oligoagars results in defense against agar-degrading epiphytes. J. Phycol. 36: 1079–1086.Google Scholar
  103. Weinberger, F. and Friedlander, M. (2000b) Endogenous and exogenous elicitors of a hypersensitive response in Gracilaria conferta (Rhodophyta). J. Appl. Phycol. 12: 139–145.Google Scholar
  104. Weinberger, F., Friedlander, M. and Gunkel, W. (1994) A bacterial facultative parasite of Gracilaria conferta. Dis. Aquat. Org. 18: 135–141.Google Scholar
  105. Weinberger, F., Friedlander, M. and Hoppe, H.G. (1999) Oligoagars elicit a physiological response in Gracilaria conferta (Rhodophyta). J. Phycol. 35: 747–755.Google Scholar
  106. Weinberger, F., Richard, C., Kloareg, B., Kashman, Y., Hoppe, H.G. and Friedlander, M. (2001) Structure–activity relationships of oligoagar elicitors toward Gracilaria conferta (Rhodophyta). J. Phycol. 37: 418–426.Google Scholar
  107. Weinberger, F., Pohnert, G., Kloareg, B. and Potin, P. (2002) A signal released by an enclophytic attacker acts as a substrate for a rapid defensive reaction of the red alga Chondrus crispus. Chem. Biochem. 3: 1260–1263.Google Scholar
  108. Weinberger, F., Pohnert, G., Berndt, M.L., Bouarab, K., Kloareg, B. and Potin, P. (2005a) Apoplastic oxidation of L-asparagine is involved in the control of the green algal endophyte Acrochaete operculata Correa & Nielsen by the red seaweed Chondrus crispus Stackhouse. J. Exp. Bot. 56: 1317–1326.PubMedGoogle Scholar
  109. Weinberger, F., Leonardi, P., Miravalles, A., Correa, J.A., Lion, U., Kloareg, B. and Potin, P. (2005b) Dissection of two distinct defense-related responses to agar oligosaccharides in Gracilaria chilensis (Rhodophyta) and Gracilaria conferta (Rhodophyta). J. Phycol. 41: 863–873.Google Scholar
  110. Weinberger, F., Coquempot, B., Forner, S., Morin, P., Kloareg, B. and Potin, P. (2007a) Different regulation of haloperoxidation during agar oligosaccharide-activated defence mechanisms in two related red algae, Gracilaria sp. and Gracilaria chilensis. J. Exp. Bot. 58: 4365–4372.PubMedGoogle Scholar
  111. Weinberger, F., Beltran, J., Correa, J.A., Lion, U., Pohnert, G., Kumar, N., Steinberg, P., Kloareg, B. and Potin, P. (2007b) Spore release in Acrochaetium sp. is bacterially controlled. J. Phycol. 43: 235–241.Google Scholar
  112. Weinberger, F., Guillemin, M.-L., Destombe, C., Valero, M., Faugeron, S., Correa, J.A., Pohnert, G., ­Pehlke, C., Kloareg B. and Potin, P. (2010) Defense evolution in the Gracilariaceae (Rhodophyta): ­Substrate-regulated oxidation of agar oligosaccharides is more ancient than the oligoagar-activated oxidative burst. J. Phycol. (in press).Google Scholar
  113. West, J.A., Klochkova, T.A., Kim, G.H. and Goer, S.L.-D. (2006) Olpidiopsis sp., an oomycete from Madagascar that infects Bostrychia and other red algae: host species susceptibility. Phycol. Res. 54: 72–85.Google Scholar
  114. Wever, R., Tromp, M.G.M., Krenn, B.E., Marjani, A. and Vantol, M. (1991) Brominating activity of the seaweed Ascophyllum nodosum – impact on the biosphere. Environ. Sci. Technol. 25: 446–449.Google Scholar
  115. Wieczorek, S.K. and Todd, C.D. (1998) Inhibition and facilitation of settlement of epifaunal marine invertebrate larvae by microbial biofilm cues. Biofouling 12: 81–118.Google Scholar
  116. Wong, P.-F., Tan, L.-J., Nawi, H. and AbuBakar, S. (2006) Proteomics of the red alga, Gracilaria changii (Gracilariales, Rhodophyta). J. Phycol. 42: 113–120.Google Scholar
  117. Wright, A.D., de Nys, R., Poore, A.G.B. and Steinberg, P.D. (2004) Chemical defense in a marine alga: heritability and the potential for selection by herbivores. Ecology 85: 2946–2959.Google Scholar
  118. Wylie, C.R. and Paul, V.J. (1988) Feeding preferences of the surgeonfish Zebrasoma flavescens in relation to chemical defenses of tropical algae. Mar. Ecol. Prog. Ser. 45: 23–32.Google Scholar
  119. Zheng, W., Wise, M.L., Wyrick, A., Metz, J.G., Yuan, L. and Gerwick, W.H. (2002) Polyenoic fatty acid isomerase from the marine alga Ptilota filicina: protein characterization and functional expression of the cloned cDNA. Arch. Biochem. Biophys. 401: 11–20.PubMedGoogle Scholar
  120. Zheng, L., Han, X., Chen, H., Lin, W. and Yan, X. (2005) Marine bacteria associated with marine macroorganisms: the potential antimicrobial resource. Ann. Microbiol. 55: 119–124.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Benthic Ecology DepartmentLeibniz-Institut für MeereswissenschaftenKielGermany
  2. 2.Station Biologique, Université Pierre et Marie Curie-Paris6 CNRS UMR 7139 and LIA’DIAMS’RoscoffFrance

Personalised recommendations