Low Molecular Weight Carbohydrates in Red Algae – an Ecophysiological and Biochemical Perspective

  • Anja Eggert
  • Ulf Karsten
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 13)


The red algae (Rhodophyta) represent a distinct eukaryotic lineage characterized by the accessory photosynthetic pigments phycoerythrin, phycocyanin, and allophycocyanins arranged in phycobilisomes, and the absence of flagella and centrioles (Woelkerling,1990). While some rhodophytes are unicellular, most species grow as filaments or membranous sheets of cells. The evolutionary relationships of simpler red algae, both unicellular and multicellular, have been the subject of extensive investigations for many years (Seckbach,1994). The paleontological specimen Bangiomorpha pubescens from the 1,200-million-year-old Hunting Formation in the Canadian Arctic is morphologically very similar to the contemporary genus Bangia(Butterfield et al., 1990), and hence represents the earliest putative record for taxonomically resolvable complex multicellularity among eukaryotes, as well as for the early evolutionary origin of the multicellular red algae.


Organic Osmolytes Anabolic Pathway Chemotaxonomic Marker Isethionic Acid Osmotic Acclimation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We greatly appreciate financial support by the Deutsche Forschungsgemeinschaft (Project EG 151/1-2, Ka 899/13-1).


  1. Barrow, K.D., Karsten, U., King, R.J. and West, J.A. (1995) Floridoside in the genus Laurencia (Rhodomelaceae: Ceramiales) – a chemosystematic study. Phycologia 34: 279–283.CrossRefGoogle Scholar
  2. Bisson, M.A. and Kirst, G.O. (1995) Osmotic acclimation and turgor pressure regulation in algae. Naturwissenschaften 82: 461–471.CrossRefGoogle Scholar
  3. Brown, A.D. and Simpson, J.R. (1972) Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J. Gen. Microbiol. 72: 589–591.PubMedGoogle Scholar
  4. Butterfield, N.J., Knoll, A.H. and Swett, K. (1990) A bangiophyte red alga from the Proterozoic of Arctic Canada. Science 250: 104–107.PubMedCrossRefGoogle Scholar
  5. Craigie, J.S. (1974) Storage products, In: W.D.P. Stewart (ed.) Algal Physiology and Biochemistry. Blackwell Press, Oxford, pp. 206–235.Google Scholar
  6. Dai, Y.D., Zhao, G., Jin, S.X., Ji, L.Y., De, L.D., Man, L.W. and Wang, B. (2004) Construction and characterization of a bacterial artificial chromosome library of marine macroalga Porphyra yezoensis (Rhodophyta). Plant Mol. Biol. Rep. 22: 375–386.CrossRefGoogle Scholar
  7. Eggert, A., Raimund, S., Van den Daele, K. and Karsten, U. (2006) Biochemical characterization of mannitol metabolism in the unicellular red alga Dixoniella grisea (Rhodellophyceae). Eur. J. Phycol. 41: 405–413.CrossRefGoogle Scholar
  8. Eggert, A., Nitschke, U., West, J.A., Michalik, D. and Karsten, U. (2007) Acclimation of the intertidal red alga Bangiopsis subsimplex (Stylonematophyceae) to salinity changes. J. Exp. Mar. Biol. Ecol. 343: 176–186.CrossRefGoogle Scholar
  9. Hinton, R.H., Burge, M.L.E. and Hartman, G.C. (1969) Sucrose interference in the assay of enzymes and protein. Anal. Biochem. 29: 248–256.PubMedCrossRefGoogle Scholar
  10. Hult, K. and Gatenbeck, S. (1979) Enzyme activities of the mannitol cycle and some connected pathways in Alternaria alternata, with comments on the regulation of the cycle. Acta Chem. Scand. B Org. Chem. Biochem. 33: 239–243.CrossRefGoogle Scholar
  11. Iwamoto, K., Kawanobe, H., Ikawa, T. and Shiraiwa, Y. (2003) Characterization of salt-regulated mannitol-1-phosphate dehydrogenase in the red alga Caloglossa continua. Plant Physiol. 133: 893–900.PubMedCrossRefGoogle Scholar
  12. Jennings, D.B., Ehrenshaft, M., Pharr, D.M. and Williamson, J.D. (1998) Roles for mannitol and mannitol dehydrogenase in active oxygen-mediated plant defense. Proc. Natl. Acad. Sci. 95: 15129–15133.PubMedCrossRefGoogle Scholar
  13. Karsten, U. (1999) Seasonal variation in heteroside concentrations of field-collected Porphyra species (Rhodophyta) from different biogeographic regions. New Phytol. 143: 561–571.CrossRefGoogle Scholar
  14. Karsten, U. and West, J.A. (1993) Ecophysiological studies 454 on six species of the mangrove red algal genus Caloglossa. Aust. J. Plant Physiol. 20: 729–739.CrossRefGoogle Scholar
  15. Karsten, U., West, J. and Zuccarello, G. (1992a) Polyol content of Bostrychia and Stictosiphonia (Rhodomelaceae,Rhodophyta) from field and culture. Bot. Mar. 35: 11–19.CrossRefGoogle Scholar
  16. Karsten, U., West, J., Mostaert, A., King, R., Barrow, K. and Kirst, G. (1992b) Mannitol in the red algal genus Caloglossa (Harvey) J. Agardh. J. Plant Physiol. 140: 292–297.CrossRefGoogle Scholar
  17. Karsten, U., Barrow, K.D. and King, R.J. (1993) Floridoside, L-isofloridoside, and D-isofloridoside in the red alga Porphyra columbina. Plant Physiol. 103: 485–491.PubMedGoogle Scholar
  18. Karsten, U., Koch, S., West, J.A. and Kirst, G.O. (1994) The intertidal red alga Bostrychia simpliciuscula Harvey ex J. Agardh from a mangrove swamp in Singapore: acclimation to light and salinity. Aquat. Bot. 48: 313–323.CrossRefGoogle Scholar
  19. Karsten, U., Barrow, K.D., Nixdorf, O. and King, R.J. (1996) The compability with enzyme activity of unusual organic osmolytes from mangrove red algae. Aust. J. Plant Physiol. 23: 577–582.CrossRefGoogle Scholar
  20. Karsten, U., Barrow, K.D., Nixdorf, O., West, J.A. and King, R.J. (1997) Characterization of mannitol metabolism in the mangrove red alga Caloglossa leprieurii (Montagne) J. Agardh. Planta 201: 173–178.CrossRefGoogle Scholar
  21. Karsten, U., West, J.A., Zuccarello, G.C., Nixdorf, O., Barrow, K.D. and King, R.J. (1999) Low molecular weight carbohydrate patterns in the Bangiophyceae (Rhodophyta). J. Phycol. 35: 967–976.CrossRefGoogle Scholar
  22. Karsten, U., West, J.A., Zuccarello, G.C., Engbrodt, R., Yokoyama, A., Hara, Y. and Brodie, J. (2003) Low molecular weight carbohydrates of the Bangiophycidae (Rhodophyta). J. Phycol. 39: 584–589.CrossRefGoogle Scholar
  23. Karsten, U., Michalik, D., Michalik, M. and West, J.A. (2005) A new unusual low molecular weight carbohydrate in the red algal genus Hypoglossum (Delesseriaceae, Ceramiales) and its possible function as osmolyte. Planta 222: 319–326.PubMedCrossRefGoogle Scholar
  24. Karsten, U., Görs, S., Eggert, A. and West, J.A. (2007) Trehalose, digeneaside and floridoside in the Florideophyceae (Rhodophyta) – a re-evaluation of its chemotaxonomic value. Phycologia 46: 143–150.CrossRefGoogle Scholar
  25. Kauss, H. (1977) Biochemistry of osmotic regulation, In: D.H. Northcote (ed.) International Review of Biochemistry: Plant Biochemistry II, Vol. 13. University Park Press, Baltimore, MD, pp. 119–140.Google Scholar
  26. Kirst, G.O. (1990) Salinity tolerance of eukaryotic algae. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 21–53.CrossRefGoogle Scholar
  27. Kremer, B.P. (1978) Patterns of photoassimilatory products in Pacific Rhodophyceae. Can. J. Bot. 56: 1655–1659.CrossRefGoogle Scholar
  28. Kremer, B.P. (1980) Taxonomic implications of algal photoassimilate patterns. Brit. Phycol. J. 15: 399–409.CrossRefGoogle Scholar
  29. Kremer, B.P. (1981) Carbon metabolism, In: C.S. Lobban and M.J. Wynne (eds.) The Biology of Seaweeds. Blackwell Press, Oxford, pp. 493–533.Google Scholar
  30. Kremer, B.P. and Kirst, G.O. (1981) Biosynthesis of 2-O-D-glycerol-D-galactopyranoside (floridoside) in marine Rhodophyceae. Plant Sci. Lett. 23: 349–357.CrossRefGoogle Scholar
  31. Kremer, B.P. and Vogl, R. (1975) Zur chemotaxonomischen Bedeutung des [14C]-Markierungsmusters bei Rhodophyceen. Phytochemistry 14: 1309–1314.CrossRefGoogle Scholar
  32. Lindberg, B. (1955) Low-molecular carbohydrates in algae. XI. Investigation of Porphyra umbilicalis. Acta Chem. Scand. 9: 1097–1099.CrossRefGoogle Scholar
  33. Littler, M.M., Littler, D.S., Blair, S. and Norris, J.N. (1985) Deepest known plant life discovered on an uncharted seamount. Science 227: 57–59.PubMedCrossRefGoogle Scholar
  34. Lüning, K. (1990) Seaweeds: Their Environment, Biogeography, and Ecophysiology. Wiley, New York.Google Scholar
  35. Meng, J., Rosell, K.G. and Srivastava, L.M. (1987) Chemical characterization of floridosides from Porphyra perforata. Carbo. Res. 161: 171–180.CrossRefGoogle Scholar
  36. Peat, S. and Rees, D.A. (1961) Carbohydrase and sulphatase activities of Porphyra umbilicalis. Biochem. J. 79: 7–12.PubMedGoogle Scholar
  37. Percival, E. (1979) The polysaccharides of green, red and brown seaweeds: their basic structure, biosynthesis and function. Brit. Phycol. J. 14: 103–117.CrossRefGoogle Scholar
  38. Ragan, M.A., Bird, C.J., Rice, E.L., Gutell, R.R., Murphy, C.A. and Singh, R.K. (1994) A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene. Proc. Natl. Acad. Sci. 91: 7276–7280.PubMedCrossRefGoogle Scholar
  39. Reed, R.H. (1985) Osmoacclimation in Bangia atropurpurea (Rhodophyta, Bangiales): the osmotic role of floridoside. Brit. Phycol. J. 20: 211–218.CrossRefGoogle Scholar
  40. Reed, R.H., Richardson, D.L., Warr, S.R. and Stewart, W.D. (1984) Carbohydrate accumulation and osmotic stress in cyanobacteria. J. Gen. Microbiol. 130: 1–4.Google Scholar
  41. Reed, R.H., Davison, I.A., Chudek, J.A. and Foster, R. (1985) The osmotic role of mannitol in the phaeophyta: An appraisal. Phycologia 24: 35–47.CrossRefGoogle Scholar
  42. Roberts, M.F. (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems 1:5. doi:10.1186/1746-1448-1-5PubMedCrossRefGoogle Scholar
  43. Rumpho, M.E., Edwards, G.E. and Loescher, W.H. (1983) A pathway for photosynthetic carbon flow to mannitol in celery leaves: activity and localization of key enzymes. Plant Physiol. 73: 869–873.PubMedCrossRefGoogle Scholar
  44. Saunders, G.W. and Hommersand, M.H. (2004) Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data. Am. J. Bot. 91: 1494–1507.PubMedCrossRefGoogle Scholar
  45. Schmatz, D.M. (1989) The mannitol cycle: a new metabolic pathway in the coccidia. Parasitol. Today 5: 205–208.PubMedCrossRefGoogle Scholar
  46. Seckbach, J. (1994) Evolutionary Pathways and Enigmatic Algae: Cyanidium caldarium (Rhodophyta) and Related Cells. Kluwer, Amsterdam, The Netherlands, 700 pp.CrossRefGoogle Scholar
  47. Warr, S.R.C., Reed, R.H. and Stewart, W.D.P. (1988) The compatibility of osmotica in cyanobacteria. Plant Cell Environ. 11: 137–142.Google Scholar
  48. Wickberg, B. (1958) Synthesis of 1-glyceritol D-galactopyranosides. Acta Chem. Scand. 12: 1187–1201.CrossRefGoogle Scholar
  49. Williamson, J.E., De Nys, R., Kumar, N., Carson, D.G. and Steinberg, P.D. (2000) Induction of metamorphosis in the sea urchin Holopneustes purpurascens by a metabolite complex from the algal host Delisea pulchra. Biol. Bull. 198: 332–345.PubMedCrossRefGoogle Scholar
  50. Woelkerling, W.J. (1990) An introduction, In: K.M. Cole and R.G. Sheath (eds.) Biology of the Red Algae. Cambridge University Press, Cambridge, pp. 1–6.Google Scholar
  51. Yancey, P.H. (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 208: 2819–2830.PubMedCrossRefGoogle Scholar
  52. Yoon, H.S., Müller, K.M., Sheath, R.G., Ott, F.D. and Bhattacharya, D. (2006) Defining the major lineages of red algae (Rhodophyta). J. Phycol. 42: 482–492.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institute of Biological Sciences, Applied EcologyUniversity of RostockRostockGermany

Personalised recommendations