Redox-Modification of Chloroplast Enzymes in Galdieria Sulphuraria: Trial-and-Error in Evolution or Perfect Adaptation to Extreme Conditions?

  • Nicolas König
  • Renate Scheibe
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 13)


Regulation of enzyme activities is required for metabolism, in particular for assimilatory pathways in plastids of all photosynthetic eukaryotic organisms as well as in prokaryotes performing oxygenic photosynthesis. In order to be able to adjust the metabolic fluxes to the actual energy input and the demand, various enzymes have developed structures that are suitable for post-translational regulation by covalent redox-modification (Dietz et al., 2002). Reversible reduction/oxidation of cysteine residues is extremely suited for this purpose. It is mediated by thioredoxins that are present in all organisms (for review see: Buchanan, 1980)


Oxygenic Photosynthesis RubisCO Activase CP12 Protein Chloroplast Enzyme Regulatory Cysteine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank Heike Schwiderski for the preparation of the manuscript. Some of the work described in this paper has been financially supported by the Deutsche Forschungsgemeinschaft.


  1. Baalmann, E., Backhausen, J.E., Kitzmann, C. and Scheibe, R. (1994) Regulation of NADP-dependent glyceraldehyde 3-phosphate dehydrogenase activity in spinach chloroplasts. Bot. Acta 107: 313–320.Google Scholar
  2. Baalmann, E., Backhausen, J.E., Vetter, S. and Scheibe, R. (1995) Reductive modification and non-reductive activation of purified spinach chloroplast NADP-glyceraldehyde 3-phosphate dehydrogenase. Arch. Biochem. Biophys. 324: 201–208.PubMedCrossRefGoogle Scholar
  3. Baranowski, M. and Stec, B. (2007) Crystallization and characterization of Galdieria sulphuraria RUBISCO in two crystal forms: structural phase transition observed in P21 crystal form. Int. J. Mol. Sci. 8: 1039–1051.CrossRefGoogle Scholar
  4. Barbier, G., Oesterhelt, C., Larson, M.D., Halgren, R.G., Wilkerson, C., Garavito, R.M., Benning, C. and Weber, A.P.M. (2005) Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae. Plant Physiol. 137: 460–474.PubMedCrossRefGoogle Scholar
  5. Buchanan, B.B. (1980) Role of light in the regulation of chloroplast enzymes. Annu. Rev. Plant Physiol. 31: 341–374.CrossRefGoogle Scholar
  6. Buchanan, B.B. (1991) Regulation of CO2 assimilation in oxygenic photosynthesis: the ferredoxin/thioredoxin system. Arch. Biochem. Biophys. 288: 1–9.PubMedCrossRefGoogle Scholar
  7. Buchanan, B.B. and Balmer, Y. (2005) Redox regulation: a broadening horizon. Annu. Rev. Plant Biol. 56: 187–220.PubMedCrossRefGoogle Scholar
  8. Ciniglia, C., Yoon, H.S., Pollio, A., Pinto, G. and Bhattacharya, D. (2004) Hidden biodiversity of the extrremophilic Cyanidiales red algae. Mol. Ecol. 13: 1827–1838.PubMedCrossRefGoogle Scholar
  9. Dietz, K.-J., Link, G., Pistorius, E.K. and Scheibe, R. (2002) Redox regulation in oxigenic photosynthesis. Prog. Bot. 63: 207–245.CrossRefGoogle Scholar
  10. Dunford, R.P., Durrant, M.C., Catley, M.A. and Dyer, T.A. (1998) Location of the redox-active cysteines in chloroplast sedoheptulose-1,7-bisphosphatase indicates that its allosteric regulation is similar but not identical to that of fructose-1,6-bisphosphatase. Photosynth. Res. 58: 221–230.CrossRefGoogle Scholar
  11. Faske, M., Holtgrefe, S., Ocheretina, O., Meister, M., Backhausen, J.E. and Scheibe, R. (1995) Redox equilibria between the regulatory thiols of light/dark-modulated enzymes and dithiothreitol: fine-tuning by metabolites. Biochim. Biophys. Acta 1247: 135–142.PubMedCrossRefGoogle Scholar
  12. Geigenberger, P., Kolbe, A. and Tiessen, A. (2005) Redox regulation of carbon storage and partitioning in response to light and sugars. J. Exp. Bot. 56: 1469–1479.PubMedCrossRefGoogle Scholar
  13. Gou, P., Hanke, G.T., Kimata-Ariga, Y., Standley, D.M., Kubo, A., Taniguchi, I., Nakamura, H. and Hase, T. (2006) Higher order structure contributes to specific differences in redox potential and electron transfer efficiency of root and leaf ferredoxins. Biochemistry 45: 14389–14396.PubMedCrossRefGoogle Scholar
  14. Graciet, E., Lebreton, S., Camadro, J.-M. and Gontero, B. (2003) Characterization of native and recombinant A4 glyceraldehyde 3-phosphate dehydrogenase. Kinetic evidence for conformation changes upon association with the small protein CP12. Eur. J. Biochem. 270: 129–136.PubMedCrossRefGoogle Scholar
  15. Gross, W. and Schnarrenberger, C. (1995) Heterotrophic growth to two strains of the acido-thermophilic red algae Galdieria sulphuraria. Plant Cell Physiol. 36: 633–638.Google Scholar
  16. Gross, W., Küver, J., Tischendorf, G., Bouchaala, N. and Büsch, W. (1998) Cryptoendolithic growth of the red alga Galdieria sulphuraria in volcanic areas. Eur. J. Phycol. 33: 25–31.CrossRefGoogle Scholar
  17. Hanke, G.T., Kimata-Ariga, Y., Taniguchi, I. and Hase, T. (2004) A post-genomic characterization of Arabidopsis ferredoxins. Plant Physiol. 134: 255–264.PubMedCrossRefGoogle Scholar
  18. Jacquot, J.-P., Eklund, H., Rouhier, N. and Schürmann, P. (2009) Structural and evolutionary aspects of ­thioredoxin reductases in photosynthetic organisms. Trends Plant Sci. 14: 336–343.PubMedCrossRefGoogle Scholar
  19. Martin, W., Scheibe, R. and Schnarrenberger, C. (1999) The calvin cycle and its regulation, In: R.C. Leegood, T.D. Sharkey and S. von Caemmerer (eds.) Advances of Photosynthesis, Vol. 9, Photosynthesis: Physiology and Metabolism. Kluwer, Dordrecht, The Netherlands, pp. 9–51.CrossRefGoogle Scholar
  20. Meyer, Y., Reichheld, J.P. and Vignols, F. (2005) Thioredoxins in Arabidopsis and other plants. Photosynth. Res. 86: 419–433.PubMedCrossRefGoogle Scholar
  21. Mills, J.D. and Mitchell, P. (1982) Modulation of coupling factor ATPase activity in intact chloroplasts reversal of thiol modulation in the dark. Biochim. Biophys. Acta 679: 75–83.CrossRefGoogle Scholar
  22. Oesterhelt, C., Klocke, S., Holtgrefe, S., Linke, V., Weber, V.P.M. and Scheibe, R. (2007a) Redox regulation of chloroplast enzymes in Galdieria sulphuraria in view of eukaryotic evolution. Plant Cell Physiol. 48: 1359–1373.PubMedCrossRefGoogle Scholar
  23. Oesterhelt, C., Schmälzlin, E., Schmitt, J.M. and Lokstein, H. (2007b) Regulation of photosynthesis in the unicellular acidophilic red alga Galdieria sulphuraria. Plant J. 51: 500–511.PubMedCrossRefGoogle Scholar
  24. Onda, Y., Matsumura, T., Kimata-Ariga, Y., Sakakibara, H., Sugiyama, T. and Hase, T. (2000) Differential interaction of maize root ferredoxin: NADP+ oxidoreductase with photosynthetic and non-photosynthetic ferredoxin isoproteins. Plant Physiol. 123: 1037–1045.PubMedCrossRefGoogle Scholar
  25. Pancic, P.G. and Strotmann, H. (1993) Structure of the nuclear encoded γ subunit of CF0CF1 of the diatom Odontella sinensis including its presequence. FEBS Lett. 320: 61–66.PubMedCrossRefGoogle Scholar
  26. Pohlmeyer, K., Paap, B.K., Soll, J. and Wedel, N. (1996) CP12: a small nuclear-encoded chloroplast protein provides novel insights into higher-plant GAPDH evolution. Plant Mol. Biol. 32: 969–978.PubMedCrossRefGoogle Scholar
  27. Porter, M.A., Stringer, C.D. and Hartman, F.C. (1988) Characterization of the regulatory thioredoxin site of phosphoribulokinase. J. Biol. Chem. 263: 123–129.PubMedGoogle Scholar
  28. Reichert, A., Dennes, A., Vetter, S. and Scheibe, R. (2003) Chloroplast fructose 1,6-bisphosphatase with changed redox modulation: comparison of the Galdieria enzyme with cysteine mutants from spinach. Biochim. Biophys. Acta 1645: 212–217.PubMedCrossRefGoogle Scholar
  29. Reyes-Prieto, A., Weber, A.P.M. and Bhattacharya, D. (2007) The origin and establishment of the plastid in algae and plants. Annu. Rev. Genet. 41: 147–168.PubMedCrossRefGoogle Scholar
  30. Reynolds, A.E., Chesnick, J.M., Woolford, J. and Cattolico, R.A. (1994) Chloroplast encoded thioredoxin genes in the red algae Porphyra yezoensis and Griffithsia pacifica: evolutionary implications. Plant Mol. Biol. 25: 13–21.PubMedCrossRefGoogle Scholar
  31. Scheibe, R. (1991) Redox-modulation of chloroplast enzymes. A common principle for individual control. Plant Physiol. 96: 1–3.PubMedCrossRefGoogle Scholar
  32. Scheibe, R., Wedel, N., Vetter, S., Emmerlich, V. and Sauermann, S.-M. (2002) Coexistence of two regulatory NADP-glyceraldehyde 3-P dehydrogenase complexes in higher plant chloroplasts. Eur. J. Biochem. 269: 5617–5624.PubMedCrossRefGoogle Scholar
  33. Schürmann, P. and Buchanan, B.B. (2008) The ferredoxin/thioredoxin system of oxygenic photosynthesis. Antioxid. Redox Signal. 10: 1–39.CrossRefGoogle Scholar
  34. Schürmann, P. and Wolosiuk, R.A. (1978) Studies on the regulatory properties of chloroplast fructose-1,6-bisphosphatase. Biochim. Biophys. Acta 522: 130–138.PubMedCrossRefGoogle Scholar
  35. Serrato, A.J., Pérez-Ruiz, J.M., Spínola, M.C. and Cejudo, F.J. (2004) A novel NADPH thoredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana. J. Biol. Chem. 279: 43821–43827.PubMedCrossRefGoogle Scholar
  36. Sesma, J.I. and Iglesias, A.A. (1998) Synthesis of Floridean starch in the red alga Gracilaria Gracilis occurs via ADP-glucose, In: G. Garab (ed.) Photosynthesis: Mechanisms and Effects. Kluwer, Dordrecht, The Netherlands, pp. 3537–3540.Google Scholar
  37. Suzuki, A., Oaks, A., Jacquot, J.-P., Vidal, J. and Gadal, P. (1985) An electron transport system in maize roots for reactions of glutamate synthase and nitrite reductase: physiological and immunochemical properties of the electron carrier and pyridine nucleotide reductase. Plant Physiol. 78: 374–378.PubMedCrossRefGoogle Scholar
  38. Takeda, T., Yokota, A. and Shigeoka, S. (1995) Resistance of photosynthesis to hydrogen peroxide in algae. Plant Cell Physiol. 36: 1089–1095.Google Scholar
  39. Tamoi, M., Murakami, A., Takeda, T. and Shigeoka, S. (1998) Lack of light/dark regulation of enzymes in the photosynthetic carbon reduction cycle in cyanobacteria Synechococcus PCC 7942 and Synechocystis PCC 6803. Biosci. Biotechnol. Biochem. 62: 374–376.CrossRefGoogle Scholar
  40. Udvardy, J., Borbély, G., Juhász, A. and Farkas, G.L. (1984) Thioredoxins and the redox modulation of glucose-6-phosphate dehydrogenase in Anabaena sp. strain PCC 7120 vegetative cells and heterocysts. J. Bacteriol. 157: 681–683.PubMedGoogle Scholar
  41. Uemura, K., Anwaruzzaman, M., Miyachi, S. and Yokota, A. (1997) Ribulose-1,5-bisphosphate carboxylase/oxygenase from thermophilic red algae with a strong specificity for CO2 fixation. Biochem. Biophys. Res. Commun. 233: 568–571.PubMedCrossRefGoogle Scholar
  42. Viola, R., Nyvall, P. and Pedersén, M. (2001) The unique features of starch metabolism in red algae. Proc. R. Soc. Lond. B 268: 1417–1422.CrossRefGoogle Scholar
  43. von Schaewen, A., Langenkämper, G., Graeve, K., Wenderoth, I. and Scheibe, R. (1995) Isolation and characterization of the plastidic glucose-6-phosphate dehydrogenase from potato and its cytosolic counterpart. Plant Physiol. 109: 1327–1335.CrossRefGoogle Scholar
  44. Wakao, S. and Benning, C. (2005) Genome-wide analysis of glucose-6-phosphate dehydrogenases in Arabidopsis. Plant J. 41: 243–256.PubMedCrossRefGoogle Scholar
  45. Weber, A.P.M., Oesterhelt, C., Gross, W., Bräutigam, A., Imboden, L.A., Krassovskaya, I., Linka, N., Truchina, J., Schneidereit, J., Voll, H., Voll, L.M., Zimmermann, M., Jamai, A., Riekhof, W.R., Yu, B., Garavito, R.M. and Benning, C. (2004) EST-analysis of the thermo-acidophilic red microalga Galdieria sulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts. Plant Mol. Biol. 55: 17–32.PubMedCrossRefGoogle Scholar
  46. Wedel, N. and Soll, J. (1998) Evolutionary conserved light regulation of Calvin cycle activity by NADPH-mediated reversible phosphoribulokinase/CP12/glyceraldehyde-3-phosphate dehydrogenase complex dissociation. Proc. Natl. Acad. Sci. USA 95: 9699–9704.PubMedCrossRefGoogle Scholar
  47. Wedel, N., Soll, J. and Paap, B.K. (1997) CP12 provides a new mode of light regulation of Calvin cycle activity in higher plants. Proc. Natl. Acad. Sci. USA 94: 10479–10484.PubMedCrossRefGoogle Scholar
  48. Wenderoth, I., Scheibe, R. and von Schaewen, A. (1997) Identification of the cysteine residues involved in redox modification of plant plastidic glucose-6-phosphate dehydrogenase. J. Biol. Chem. 272: 26985–26990.PubMedCrossRefGoogle Scholar
  49. Werner-Grüne, S., Gunkel, D., Schumann, J. and Strotmann, H. (1994) Insertion of a “chloroplast-like” regulatory segment responsible for thiol modulation into γ-subunit of F0F1-ATPase of the cyanobacterium Synechocystis 6803 by mutagenesis of atpC. Mol. Gen. Genet. 244: 144–150.PubMedCrossRefGoogle Scholar
  50. Zhang, N. and Portis, A.R., Jr. (1999) Mechanism of light regulation of Rubisco: a specific role for the larger Rubisco activase isoform involving reductive activation by thioredoxin-f. Proc. Natl. Acad. Sci. USA 96: 9438–9443.PubMedCrossRefGoogle Scholar
  51. Zhang, N., Schürmann, P. and Portis, A.R., Jr. (2001) Characterization of the regulatory function of the 46-kD isoform of Rubisco activase from Arabidopsis. Photosynth. Res. 68: 29–37.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Plant PhysiologyUniversity of OsnabrueckOsnabrueckGermany

Personalised recommendations