Advertisement

Polymers and Copolymers Containing Covalently Bonded Polyhedral Oligomeric Silsesquioxanes Moieties

  • Katherine Grace Williams
  • Samuel Paul Gido
  • Edward Bryan Coughlin
Chapter
Part of the Advances in Silicon Science book series (ADSS, volume 3)

Abstract

The use of polyhedral oligomeric silsesquioxanes (POS or POSS®) as a moiety in polymers and copolymers is an area of research that has gained tremendous popularity in recent years. A number of excellent review articles have been published [1-8], as well as articles that elaborate on the larger field of silsesquioxanes [9-10]. In this chapter, we discuss T8 POS compounds, which are represented by the general formula Si8O12R8, where R is an organic group, or group suitable for polymerization or grafting. For ease of illustration, we have chosen to schematically represent the POS moiety as a cubic structure in many of the subsequent schemes that will appear in this chapter; this representation is shown in Fig. 4.1.

Keywords

Block Copolymer Atom Transfer Radical Polymerization Atom Transfer Radical Polymerization Chem Mater Raft Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Joshi M, Butola BS (2004) J Macromol Sci Part C Polym Rev 44(4):389–410.Google Scholar
  2. 2.
    Li G, Wang L, Ni H, Pittman CU (2001) J Inorg Organomet Polym 11(11):123–154.Google Scholar
  3. 3.
    Kannan RY, Salacinski HJ, Butler PE, Seifalian AM (2005) Acc Chem Res 38(38):879–884.Google Scholar
  4. 4.
    Phillips S, Haddad TS, Tomczak S (2004) Current Opinion Solid State Mater Sci 8:21–29.Google Scholar
  5. 5.
    Wu J, Mather PT (2009) J Macromol Sci Part C Polym Rev 49:25–63.Google Scholar
  6. 6.
    Cordes DB, Lickiss PD, Rataboul F (2010) Chem Rev 110:2081–2173.Google Scholar
  7. 7.
    Pielichowski K, Njuguna J, Janowski B, Pielichowski J (2006) Adv Polym Sci 201:225–296.Google Scholar
  8. 8.
    Schwab JJ, Lichtenhan J (1998) Appl Organomet Chem 12:707–713.Google Scholar
  9. 9.
    Baney RH, Cao X (2000) Polysilsesquioxanes. In Jones G (ed) Silicone-Containing Polymers, Kluwer Academic Publishers, pp. 157–184.Google Scholar
  10. 10.
    Loy DA, Rahimian K (2003) Building Hybrid Organic-Inorganic Materials Using Silsesquioxanes. In Nalwa HS (ed) Hybrid Materials, American Scientifi c Publishers, Vol. 1, pp. 125–163.Google Scholar
  11. 11.
    Haddad TS, Lichtenhan JD (1996) Macromolecules 29(29):7302–7304.Google Scholar
  12. 12.
    Haddad TS, Viers BD, Phillips SH (2002) J Inorg Organomet Polym 11(11):155–164.Google Scholar
  13. 13.
    Wu J, Haddad TS, Kim G, Mather PT (2007) Macromolecules 40:544–554.Google Scholar
  14. 14.
    Xu H, Kuo S, Lee J, Chang F (2002) Macromolecules 35(35):8788–8793Google Scholar
  15. 15.
    Zhang W, Fu BX, Seo Y, Schrag E, Hsiao B, Mather PT, Yang N, Xu D, Ade H, Rafailovich M, Sokolov J (2002) Macromolecules 35:8029–8038.Google Scholar
  16. 16.
    Xu H, Yang B, Wang J, Guang S, Li C (2005) Macromolecules 38:10455–10460.Google Scholar
  17. 17.
    Lichtenhan JD, Otonari YA, Carr MJ (1995) Macromolecules 28:8435–8437.Google Scholar
  18. 18.
    Matyjaszewski K, XIa J (2001) Chem Rev 101:2921–2990.Google Scholar
  19. 19.
    Moad G, Rizzardo E, Thang SH (2005) Aust J Chem 58:379–410.Google Scholar
  20. 20.
    Moad G, Rizzardo E, Thang SH (2008) Polymer 49:1079–1131.Google Scholar
  21. 21.
    Hawker CJ, Bosman AW, Harth E (2001) Chem Rev 101(101):3661–3688.Google Scholar
  22. 22.
    Mather PT, Chun SB, Pyun J, Matyjaszewski K, Jeon HG (2000) Polym Prepr 41(41):582.Google Scholar
  23. 23.
    Pyun J, Matyjaszewski K, Wu J, Kim GM, Chun SB, Mather PT (2003) Polymer 44(44):2739–2750.Google Scholar
  24. 24.
    Pyun J, Matyjaszewski K (2000) Macromolecules 33:217–220.Google Scholar
  25. 25.
    Matyjaszewski K, Miller PJ, Pyun J, Kickelbick G, Diamanti S (1999) Macromolecules 32:6526–6535.Google Scholar
  26. 26.
    Chen R, Feng W, Zhu S, Botton G, Ong B, Wu Y (2006) Polymer 47:1119–1123.Google Scholar
  27. 27.
    Zhang W, Zhuang X, Li X, Lin Y, Bai J, Chen Y (2008) React Funct Mater 69:124–129.Google Scholar
  28. 28.
    Zhang W, Liu L, Zhuang X, Li X, Bai J, Chen Y (2008) J Polym Sci Part A Polym Chem 46:7049–7061.Google Scholar
  29. 29.
    Zhang W, Fang B, Walther A, Müller A (2009) Macromolecules 42:2563–2569.Google Scholar
  30. 30.
    Miyamoto K, Hosaka N, Otsuka H, Takahara A (2006) Chem Lett 3(10):1098–1099.Google Scholar
  31. 31.
    Hirai T, Leolukman M, Jin S, Goseki R, Ishida Y, Kakimoto M, Hayakawa T, Ree M, Gopalan P (2009) Macromolecules 42:8835–8843.Google Scholar
  32. 32.
    Hira T, Leolukman M, Hayakawa T, Kakimoto M, Gopalan P (2008) Macromolecules 41:4558–4560.Google Scholar
  33. 33.
    Piotti ME (1999) Current Opinion Solid State Mater Sci 4:539–547.Google Scholar
  34. 34.
    Zheng L, Hong S, Cardoen G, Burgaz E, Gido S, Coughlin EB (2004) Macromolecules 37:8606–8611.Google Scholar
  35. 35.
    Constable GS, Lesser AJ, Coughlin EB (2004) Macromolecules 37:1276–1282.Google Scholar
  36. 36.
    Mather PT, Jeon HG, Romo-Uribe A (1999) Macromolecules 32:1194–1203.Google Scholar
  37. 37.
    Zheng L, Kasi RM, Farris RJ, Coughlin EB (2002) J Polym Sci Part A Polym Chem 40:885–891.Google Scholar
  38. 38.
    Xu W, Chung C, Kwon Y (2007) Polymer 48(48):6286–6293.Google Scholar
  39. 39.
    Zheng L, Farris RJ, Coughlin EB (2201) J Polym Sci Part A Polym Chem 39(39):2920–2928.Google Scholar
  40. 40.
    Kelsey RD, Handlin DL, Narayana M, Scardinao BM (1997) J Polym Sci Part A Polym Chem 35:3027–3047.Google Scholar
  41. 41.
    Pittman CU, Li GZ, Ni HL (2003) Macromol Symp 196:301–325.Google Scholar
  42. 42.
    Mohring PC, Coville NJ (1994) J Organomet Chem 479(479–2):1–29.Google Scholar
  43. 43.
    Zheng L, Farris RJ, Coughlin EB (2001) Macromolecules 34(34):8034–8039.Google Scholar
  44. 44.
    Escude NC, Chen E (2009) Chem Mater 21:5743–5753.Google Scholar
  45. 45.
    Seurer B, Coughlin EB (2008) Macromol Chem Phys 209:1198–1209.Google Scholar
  46. 46.
    Fu BX, Hsiao BS, Pagola S, Stephens P, White H, Rafailovich M, Sokolov J, Mather PT, Jeon HG, Lichtenhan J, Schwab J (2001) Polymer 42:599–611.Google Scholar
  47. 47.
    Raghunath J, Georgiou G, Armitage D, Nazhat SN, Sales KM, Butler PE, Seifalian AM (2008) J Biomed Mater Res Part A 91A(3):834–844.Google Scholar
  48. 48.
    Wang W, Guo Y, Otaigbe JU (2009) Polymer 50:5749–5757.Google Scholar
  49. 49.
    Lee A, Lichtenhan JD (1998) Macromolecules 31(31):4970–4974.Google Scholar
  50. 50.
    Matejka L, Strachota A, Plestil J, Whelan P, Steinhart M, Slouf M (2004) Macromolecules 37:9449–9456.Google Scholar
  51. 51.
    Strachota A, Kroutilova I, Kovarova J, Matejka L (2004) Macromolecules 37(37):9457–9464.Google Scholar
  52. 52.
    Brunsvold A, Minton T, Gouzman I, Grossman E, Gonzalez R (2004) High Perform Polym 16:303.Google Scholar
  53. 53.
    Leu C, Chang Y, Wei K (2003) Chem Mater 15:3721–3727.Google Scholar
  54. 54.
    Wright ME, Petteys BJ, Guenthner AJ, Fallis S, Yandek GR, Tomczak SJ, Minton TK, Brunsvold A (2006) Macromolecules 39:4710–4718.Google Scholar
  55. 55.
    Wright ME, Schorzman DA, Feher FJ, Jin R (2003) Chem Mater 15:264–268.Google Scholar
  56. 56.
    Cattopadhyay DK, Webster DC (2009) Prog Polym Sci 34:1068–1133.Google Scholar
  57. 57.
    Leu CM, Reddy GM, Wei K-H, Shu C-F (2003) Chem Mater 15(15):2261–2265.Google Scholar
  58. 58.
    Fang Y, Chen L, Chen S (2009) J Polym Sci Part A Polym Chem 47:1136.Google Scholar
  59. 59.
    Hussain H, Tan BH, Mya KY, Liu Y, He CB, Davis TP (2010) J Polym Sci Part A Polym Chem 48:152–163.Google Scholar
  60. 60.
    Kang J-M, Cho H-J, Lee J, Lee J-I, Lee S-K, Cho N-S, Hwang D-H, Shim H-K (2006) Macromolecules 39:4999–5008.Google Scholar
  61. 61.
    Xu Y, Yuan J, Muller AHE (2009) Polymer 50:5933–5939.Google Scholar
  62. 62.
    Sheikh FA, Barakat NAM, Kim B, Aryal S, Khil M-S, Kim H-Y (2009) Mater Sci Eng C 29:869–876.Google Scholar
  63. 63.
    Kim KM, Ouchi Y, Chujo Y (2003) Polym Bull 49:341–348.Google Scholar
  64. 64.
    Drazkowski DB, Lee A, Haddad TS, Cookson DJ (2006) Macromolecules 39:1854–1863.Google Scholar
  65. 65.
    Drazkowski DB, Lee A, Haddad TS (2007) Macromolecules 40(40):2798–2805.Google Scholar
  66. 66.
    Carroll JB, Waddon AJ, Nakade H, Rotello VM (2003) Macromolecules 36:6289–6291.Google Scholar
  67. 67.
    Wu J, Haddad TS, Mather PT (2009) Macromolecules 42(42):1142–1152.Google Scholar
  68. 68.
    Haddad TS, Lichtenhan JD (1996) Macromolecules 29(29):7302–7304.Google Scholar
  69. 69.
    Haddad TS, Viers BD, Phillips SH (2002) J Inorg Organometal Polym 11(11):155–164.Google Scholar
  70. 70.
    Bharadwaj RK, Berry RJ, Farmer BL (1998) Polymer 41:7209–7221.Google Scholar
  71. 71.
    Romo-Uribe A, Mather PT, Haddad TS, Lichtenhan JD (1998) J Polym Sci Part B Polym Phys 36(36):1857–1872.Google Scholar
  72. 72.
    Larsson K (1961) Ark Kemi 16(16):215–219.Google Scholar
  73. 73.
    Larsson K (1961) Ark Kemi 16(16):203–208.Google Scholar
  74. 74.
    Waddon AJ, Coughlin EB (2003) Chem Mater 15:4555–4561.Google Scholar
  75. 75.
    Zheng L, Waddon AJ, Farris RJ, Coughlin EB (2002) Macromolecules 35(35):2375–2379.Google Scholar
  76. 76.
    Zheng L, Hong S, Cardoen G, Burgaz E, Gido S, Coughlin EB (2004) Macromolecules 37:8606–8611.Google Scholar
  77. 77.
    Waddon AJ, Zheng L, Farris RJ, Coughlin EB (2002) Nano Lett 2(2):1149–1155.Google Scholar
  78. 78.
    Matsen MW, Bates FS (1996) Macromolecules 29:7641–7644.Google Scholar
  79. 79.
    Muthukumar M, Ober CK, Thomas EL (1997) Science 277:1225–1232.Google Scholar
  80. 80.
    Whitesides GM, Mathias JP, Seto CT (1991) Science 254:1312–1319.Google Scholar
  81. 81.
    Iacono ST, Budy SM, Mabry JM, Smith DW (2007) Macromolecules 40:9517–9522.Google Scholar
  82. 82.
    Gadodia GA, Synthesis and Study of Hybrid Organic-Inorganic Polyhedral Oligomeric Silsesquioxanes (POSS), University of Amherst Amherst, MA, 2009.Google Scholar
  83. 83.
    Bates FS, Schulz MF, Khandpur AK, Forster S, Rosedale JH, Almdal K, Martensen K (1994) Faraday Discuss 98:7–18.Google Scholar
  84. 84.
    Milner ST (1994) Macromolecules 27:2333–2335.Google Scholar
  85. 85.
    Fu BX, Lee A, Haddad TS (2004) Macromolecules 37:5211–5218.Google Scholar
  86. 86.
    Knischka R, Dietsche F, Hanselmann R, Frey H, Mulhaupt R (1999) Langmuir 15:4752–4756.Google Scholar
  87. 87.
    Cardoen G, Coughlin EB (2004) Macromolecules 37:5123–5126.Google Scholar
  88. 88.
    Zhang X, Chan E, Glotzer S (2005) J Chem Phys 123:184718.Google Scholar
  89. 89.
    Lee W, Ni S, Deng J, Kim B-S, Satija SK, Mather PT, Esker AR (2007) Macromolecules 40:682–688.Google Scholar
  90. 90.
    Kim B-S, Mather PT (2002) Macromolecules 35:8378–8384.Google Scholar
  91. 91.
    Striolo A, McCabe C, Cummings PT (2006) J Chem Phys 125:104904.Google Scholar
  92. 92.
    Hedrick, JL, Carter KR, Richter R, Miller RD, Russell TP, Flores V, Meccereyes D, Dubois P, Jerome R (1998) Chem Mater 10:39–49.Google Scholar
  93. 93.
    Chung CL, Hsiao S-H (2008) Polymer 49(49):2476–2485Google Scholar
  94. 94.
    Carter KR, DiPietro RA, Sanchez MI, Russell TP, Lakshmanan P, McGrath JE (1997) Chem Mater 9(9):105–118.Google Scholar
  95. 95.
    Su RQ, Muller TE, Prochazka J, Lercher JA (2002) Adv Mater 14:1369–1373Google Scholar
  96. 96.
    Seckin T, Koytepe S, Adiguzel HI (2008) Mater Chem Phys 112:1040–1046.Google Scholar
  97. 97.
    Wright ME, Petteys BJ, Guenthner AJ, Fallis S, Yandek GR, Tomczak SJ, Minton TK, Brunsvold A (2006) Macromolecules 39:4710–4718.Google Scholar
  98. 98.
    Douvas AM, Van Roey F, Goethals M, Papadokostaki KG, Yannakopoulou K, Niakoula D, Gogolides E, Argitis P (2006) Chem Mater 18:4040–4048.Google Scholar
  99. 99.
    Eon D, Raballand V, Cartry G, Cardinaud C, Vourdas N, Argitis P, Gogolides E (2006) J Vac Sci Technol 24(24):2678–2688.Google Scholar
  100. 100.
    Knight PT, Lee KM, Qin H, Mather PT (2008) Biomacromolecules 9:2458–2467.Google Scholar
  101. 101.
    Pan H, Qiu Z (2010) Macromolecules 43:1499–1506.Google Scholar
  102. 102.
    Dieterich D (1981) Prog Org Coat 9:281–340.Google Scholar
  103. 103.
    Madbouly SA, Otaigbe JU (2009) Prog Polym Sci 34:1283–1332.Google Scholar
  104. 104.
    Nanda AK, Wicks DA, Madbouly SA, Otaigbe JU (2006) Macromolecules 39(39):7037–7043.Google Scholar
  105. 105.
    Turri S, Levi M (2005) Macromolecules 38(38):5569–5574.Google Scholar
  106. 106.
    Janowski B, Pielichowski K (2008) Thermochim Acta 478:51–53.Google Scholar
  107. 107.
    Raftopoulos KN, Pandis C, Apekis L, Pissis P, Janowski B, Jaczewska J (2010) Polymer 51:709–718.Google Scholar
  108. 108.
    Mya KY, Wang Y, Shen L, Xu J, Wu Y, Lu X, He C (2009) J Polym Sci Part A Polym Chem 47:4602–4616.Google Scholar
  109. 109.
    Liu H, Zheng S (2005) Macromol Rapid Commun 26(26):196–200.Google Scholar
  110. 110.
    Dewprashad B, Eisenbraun EJ (1994) J Chem Educ 71(71):290–294Google Scholar
  111. 111.
    Lee A, Lichtenhan JD (1998) Macromolecules 31(31):4970–4974.Google Scholar
  112. 112.
    Abad MJ, Barral L, Fasce DP, Williams RJJ (2003) Macromolecules 36:3128–3135.Google Scholar
  113. 113.
    Zhang Z, Liang G, Wang J, Ren P (2007) Polym Composites:175–179.Google Scholar
  114. 114.
    Teo JKH, Teo KC, Pan B, Xiao Y, Lu X (2007) Polymer 48:5671–5680.Google Scholar
  115. 115.
    Strachota A, Kroutilova I, Kovarova J, Matejka L (2004) Macromolecules 37(37):9457–9464.Google Scholar
  116. 116.
    Choi J, Harcup J, Yee AF, Zhu Q, Laine RM (2001) J Am Chem Soc 123:11420–11430.Google Scholar
  117. 117.
    Franchini E, Galy J, Gerard J-F, Tabuani D, Medici A (2009) Polym Degrad Stab 94:1728–1736.Google Scholar
  118. 118.
    Chen W-Y, Wang Y-Z, Kuo S-W, Huang C-F, Tung P-H, Chang F-C (2004) Polymer 45:6897–6908.Google Scholar
  119. 119.
    Isayeva IS, Kennedy JP (2004) J Polym Sci Part A:Polym Chem 42:4337–4352.Google Scholar
  120. 120.
    Harrison PG, Kannengisser R (1996) Chem Commun:415.Google Scholar
  121. 121.
    Zhang C, Babonneau F, Bonhomme C, Laine RM, Soles CL, Hristov HA, Yee AF (1998) J Am Chem Soc 120:8380.Google Scholar
  122. 122.
    Morrison JJ, Love CJ, Manson BW, Shannon IJ, Morris RE (2002) J Mater Chem 12:3209–3212.Google Scholar
  123. 123.
    Hanssen RWJM, van Santen RA, Abbenhuis HCL (2004) Eur J Inorg Chem:675–683.Google Scholar
  124. 124.
    Lee KM, Knight PT, Chung T, Mather PT (2008) Macromolecules 41:4730–4738.Google Scholar
  125. 125.
    Pyun J, Matyjaszewski K (2000) Macromolecules 33:217–220.Google Scholar
  126. 126.
    Chen K-B, Chang Y-P, Yang S-H, Hsu C-S (2006) Thin Sold Films 514:103–109.Google Scholar
  127. 127.
    Cho H-J, Hwang D-H, Lee J-I, Jung Y-K, Park J-H, Lee J, Lee S-K, Shim H-K (2006) Chem Mater 18(18):3780–3787.Google Scholar
  128. 128.
    Ge Z, Wang D, Zhou Y, Liu H, Liu S (2009) Macromolecules 42(42):2903–2910.Google Scholar
  129. 129.
    Liu Y, Yang X, Zhang W, Zheng S (2006) Polymer 47:6814–6825.Google Scholar
  130. 130.
    Maitra P, Wunder SL (2002) Chem Mater 14(14):4494–4497.Google Scholar
  131. 131.
    Miao J, Cui L, Lau HP, Mather PT, Zhu L (2007) Macromolecules 40:5460–5470.Google Scholar
  132. 132.
    Gungor EBC, Durmaz H, Hizal G, Tunca U (2009) J Polym Sci.Part A Polym Chem 47:5947–5953.Google Scholar
  133. 133.
    Zhang W, Muller AHE (2010) Macromolecules 43:3148–3152.Google Scholar
  134. 134.
    Maitra P, Wunder SL (2002) Chem Mater 14(14):4494–4497.Google Scholar
  135. 135.
    Miao J, Zhu L (2010) J Phys Chem B 114:1879–1887.Google Scholar
  136. 136.
    Douvas AM, Van Roey F, Goethals M, Papadokostaki KG, Yannakopoulou K, Niakoula D, Gogolides E, Argitis P (2006) Chem Mater 18:4040–4048.Google Scholar
  137. 137.
    Dodiuk-Kenig H, Maoz Y, Lizenboim K, Eppelbaum I, Zalsman B, Kenig S (2006) J Adhes Sci Technol 20(20):1401–1412.Google Scholar
  138. 138.
    Tuteja A (2007) Science 318:1618.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Katherine Grace Williams
    • 1
    • 2
  • Samuel Paul Gido
    • 1
    • 2
  • Edward Bryan Coughlin
    • 1
    • 2
  1. 1.Department of Polymer Science and EngineeringUniversity of Massachusetts AmherstAmherstUSA
  2. 2.Department of Polymer Science and EngineeringUniversity of Massachusetts AmherstAmherstUSA

Personalised recommendations