Advertisement

Metallasilsesquioxanes: Molecular Analogues of Heterogeneous Catalysts

  • Antony J. Ward
  • Anthony F. Masters
  • Thomas Maschmeyer
Chapter
Part of the Advances in Silicon Science book series (ADSS, volume 3)

Abstract

As soluble molecular analogues of silica surfaces, polyhedral oligosilsesquioxanes (POS or POSS®) have been used extensively, along with alkylsilanols, to mimic the structure and chemistry of silica surfaces (Figure 3.1).

Keywords

Heterogeneous Catalyst Silica Surface Methyl Acrylate Ethylene Polymerization Iron Silicate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Duchateau R, Cremer U, Harmsen R, Mohamud S, Abbenhuis H, van Santen R, Meetsma A, Thiele S-H, van Tol M, Kranenburg M (1999) Organometallics 18:5447-5459.CrossRefGoogle Scholar
  2. 2.
    Feher F, Tajima T (1994) J Am Chem Soc 116:2145-2146.CrossRefGoogle Scholar
  3. 3.
    Herrmann W, Anwander R, Dufaud V, Scherer W (1994) Angew Chem Int Ed 33:1285-1286.CrossRefGoogle Scholar
  4. 4.
    Liu J-C, Wilson S, Shapely J, Feher F (1990) Inorg Chem 29:5138-5139.CrossRefGoogle Scholar
  5. 5.
    Abbenhuis H (2000) Chem Eur J 6:25-32.CrossRefGoogle Scholar
  6. 6.
    Coperet C, Chabanas M, Petroff Saint-Arroman P, Basset J-M (2003) Angew Chem Int Ed 42:156-181.CrossRefGoogle Scholar
  7. 7.
    Maschemeyer T, Klunduk M, Martin C, Shephard D, Thomas J, Johnson B (1997) Chem Commun:1847-1848.Google Scholar
  8. 8.
    Maschemeyer T, Rey F, Sankar G, Thomas J (1995) Nature 378:159-162CrossRefGoogle Scholar
  9. 8.
    Crocker M, Herold R (1997) WO 97/24333.Google Scholar
  10. 9.
    Crocker M, Herold R, Orpen A (1997) Chem Commun: 2411-2412.Google Scholar
  11. 10.
    Feher F, Budzichowski T, Rahimian K, Ziller J (1992) J Am Chem Soc 114:3859-3866.CrossRefGoogle Scholar
  12. 11.
    Buys I, Hambley T, Houlton D, Maschemeyer T, Masters A, Smith A (1994) J Mol Catal 86:309-318.CrossRefGoogle Scholar
  13. 12.
    Field L, Lindall C, Maschemeyer T, Masters A (1994) Aust J Chem 47:1127-1132.CrossRefGoogle Scholar
  14. 13.
    Abbenhuis H, Krijnen S, van Santen R (1997) Chem Commun:331-332.Google Scholar
  15. 14.
    Krijnen S, Mojet B, Abbenhuis H, van Hooff J, van Santen R (1999) Phys Chem Chem Phys 1:361-365.CrossRefGoogle Scholar
  16. 15.
    Krijnen S, Abbenhuis H, Hanssen R, van Hooff J, van Santen R (1998) Angew Chem Int Ed 37:356-358.CrossRefGoogle Scholar
  17. 16.
    Duchateau R, Abbenhuis H, van Santen R, Meetsma A, Thiele SK-H, van Tol M (1998) Organometallics 17:5663-5673.CrossRefGoogle Scholar
  18. 17.
    Duchateau R, Abbenhuis H, van Santen R, Thiele S-H, van Tol M (1998) Organometallics 17:5222-5224.CrossRefGoogle Scholar
  19. 18.
    Feher F, Blanski R (1992) J Am Chem Soc 114:5886-5887.CrossRefGoogle Scholar
  20. 19.
    Kim Y, Han Y, Lee M, Yoon S, Choi K, Song B, Do Y (2001) Macromol Rapid Commun 22:573-578.CrossRefGoogle Scholar
  21. 20.
    Winkhofer N, Voigt A, Dorn H, Roesky H, Steiner A, Stalke D, Reller A (1994) Angew Chem Int Ed 33:1352-1354.CrossRefGoogle Scholar
  22. 21.
    Murugavel R, Davis P, Shete V (2003) Inorg Chem 42:4696-4706.CrossRefGoogle Scholar
  23. 22.
    Wada K, Itayama N, Watanabe N, Bundo M, Kondo T, Mitsudo T (2004) Organometallics 23:5824-5832.CrossRefGoogle Scholar
  24. 23.
    Pérez Y, Pérez Quintanilla D, Fajardo M, Sierra I, del Hierro I (2007) J Mol Catal A Chem 271:227-237.CrossRefGoogle Scholar
  25. 25.
    Jones M, Davidson M, Keir C, Wooles A, Mahon M, Apperley D (2008) Dalton Trans:3655-3657.Google Scholar
  26. 26.
    Wada K, Nakashita M, Yamamoto A, Wada H, Mitsudo T (1997) Chem Lett:1209-1210.Google Scholar
  27. 27.
    Wada K, Nakashita M, Yamamoto A, Wada H, Mitsudo T (1998) Res Chem Intermed 24:515-527.CrossRefGoogle Scholar
  28. 28.
    Ohde C, Brandt M, C, Döbler J, Zeimer B, Sauer J (2008) Dalton Trans:326-331.Google Scholar
  29. 29.
    Lovat S, Mba M, Abbenhuis H, Vogt D, Zonta C, Licini G (2009) Inorg Chem 48:4724-4728.CrossRefGoogle Scholar
  30. 30.
    Oskam J, Schrock R (1993) J Am Chem Soc 115:11831-11845.CrossRefGoogle Scholar
  31. 31.
    Schaverien C, Dewan J, Schrock R (1986) J Am Chem Soc 108:2771-2773.CrossRefGoogle Scholar
  32. 32.
    Schrock R, DePue R, Feldman J, Schaverien C, Dewan J, Liu A (1988) J Am Chem Soc 110:1423-1435.CrossRefGoogle Scholar
  33. 33.
    Schrock R, Murdzek J, Bazan G, Robbins J, DiMare M, O’Regan M (1990) J Am Chem Soc 112:3875-3886.CrossRefGoogle Scholar
  34. 34.
    Hay M, Hainaut B, Geib S (2003) Inorg Chem Commun 6:431-434.CrossRefGoogle Scholar
  35. 35.
    Hay M, Geib S, Pettner D (2009) Polyhedron 28:2183-2186.CrossRefGoogle Scholar
  36. 36.
    Duchateau R, van Meerendonk W, Huijser S, Staal B, van Schilt M, Gerritsen G, Meetsma A, Koning C, Kemmere M, Keurentjes J (2007) Organometallics 26:4204-4211.CrossRefGoogle Scholar
  37. 37.
    Abbenhuis H, van Herwijnen H, van Santen R (1996) Chem Commun 1941-1942.Google Scholar
  38. 38.
    Lesic R, Ward A, Masters A, Maschemeyer T (2010) submitted to Angew Chem Int Ed.Google Scholar
  39. 39.
    Wu G, Chen Y, Xu D-J, Liu J-C, Sun W, Shen Z (2009) J Organomet Chem 694:1571-1574.Google Scholar
  40. 40.
    Yu J, Wu G, Huang J, Sun W, Shen Z (2009) Chin J Polym Sci 27:597-600.CrossRefGoogle Scholar
  41. 41.
    Feher F, Blanski R (1993) Makromol Chem Macromol. Symp 66:95-108..Google Scholar
  42. 42.
    Feher F, Walzer J, Blanski R (1991) J Am Chem Soc 113:3618-3619.CrossRefGoogle Scholar
  43. 43.
    Feher F, Walzer J (1991) Inorg Chem 30:1689-1694.CrossRefGoogle Scholar
  44. 44.
    Feher FJ, Blanski RL (1993) Organometallics 12:958-963.CrossRefGoogle Scholar
  45. 45.
    Liu J-C (1996) Chem.Commun: 1109-1110.Google Scholar
  46. 46.
    Liu J-C (1999) Appl Organometal Chem 13:295-302.CrossRefGoogle Scholar
  47. 47.
    van der Vlugt J, Ackerstaff J, Dijkstra T, Mills A, Kooijman H, Spek A, Meetsma A, Abbenhuis H, Vogt D (2004) Adv Synth Catal 346:399-412.CrossRefGoogle Scholar
  48. 48.
    Ionescu G, van der Vlugt J, Abbenhuis H, Vogt D (2005) Tetrahedron-Asymmetr 16:3970-3975.CrossRefGoogle Scholar
  49. 49.
    Wada K, Nakashita M, Yamamoto A, Mitsudo T (1998) Chem Commun: 133-134.Google Scholar
  50. 50.
    Maxim N, Abbenhuis H, Stobbelaar P, Mojet B, van Santen R (1999) Phys Chem Chem Phys 1:4473-4477.CrossRefGoogle Scholar
  51. 51.
    Maxim N, Magusin P, Kooyman P, van Wolput J, van Santen R, Abbenhuis H (2001) Chem Mater 13:2958-2964.CrossRefGoogle Scholar
  52. 52.
    Hanssen R, Meetsma A, van Santen R, Abbenhuis H (2001) Inorg Chem 40:4049-4052.CrossRefGoogle Scholar
  53. 53.
    Duchateau R, Harmsen R, Abbenhuis H, van Santen R, Meetsma A, Thiele S-H, Kranenburg M (1999) Chem Eur J 5:3130-3135.CrossRefGoogle Scholar
  54. 54.
    Maxim N, Overweg A, Kooyman P, Van Wolput J, Hanssen R, van Santen R, Abbenhuis H (2002) J Phys Chem B 106:2203-2209.CrossRefGoogle Scholar
  55. 55.
    Amblard M, Burch R, Southward B (1999) Appl Catal B 22:L159-L166.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Antony J. Ward
    • 1
  • Anthony F. Masters
    • 1
  • Thomas Maschmeyer
    • 1
  1. 1.Laboratory of Advanced Catalysis for SustainabilitySchool of Chemistry F11, University of SydneySydneyAustralia

Personalised recommendations