Building Reconstruction from Multi-aspect InSAR Data

  • Antje Thiele
  • Jan Dirk Wegner
  • Uwe Soergel
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 15)


Modern space borne SAR sensors like TerraSAR-X and Cosmo-SkyMed provide geometric ground resolution of one meter. Airborne sensors (PAMIR [Brenner and Ender 2006], SETHI [Dreuillet et al. 2008]) achieve even higher resolution. In data of such kind, man-made structures in urban areas become visible in detail independently from daylight or cloud coverage. Typical objects of interest for both civil and military applications are buildings, bridges, and roads. However, phenomena due to the side-looking scene illumination of the SAR sensor complicate interpretability (Schreier 1993). Layover, foreshortening, shadowing, total reflection, and multi-bounce scattering of the RADAR signal hamper manual and automatic analysis especially in dense urban areas with high buildings. Such drawbacks may partly be overcome using additional information from, for example topographic maps, optical imagery (see corresponding chapter in this book), or SAR acquisitions from multiple aspects.


Building Height InSAR Data Slant Range Phase Profile Building Roof 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bennett AJ, Blacknell D (2003) The extraction of building dimensions from high-resolution SAR imagery. In: IEEE Proceedings of the international radar conference, pp 182–187Google Scholar
  2. Bickel DL, Hensley WH, Yocky DA (1997) The effect of scattering from buildings on interferometric SAR measurements. In: Proceedings of IGARSS, vol 4, pp 1545–1547Google Scholar
  3. Bolter R (2001) Buildings from SAR: detection and reconstruction of buildings from multiple view high-resolution interferometric SAR data. Dissertation, University of Graz, AustriaGoogle Scholar
  4. Bolter R, Leberl F (2000) Detection and reconstruction of human scale features from high resolution interferometric SAR data. In: IEEE Proceedings of the international conference on pattern recognition, pp 291–294Google Scholar
  5. Brenner AR, Ender JHG (2006) Demonstration of advanced reconnaissance techniques with the airborne SAR/GMTI sensor PAMIR. In: IEE Proceedings radar, sonar and navigation, vol 153, No. 2, pp 152–162CrossRefGoogle Scholar
  6. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698CrossRefGoogle Scholar
  7. Dreuillet P, Bonin G, du Plessis OR, Angelliaume S, Cantalloube H, Dubois-Fernandez P, Dupuis X, Coulombeix C (2008) The new ONERA multispectral airborne SAR system. In: Proceedings of IEEE international geoscience and remote sensing symposium, vol 4, pp IV-165–IV-168Google Scholar
  8. Hill RD, Moate CP, Blacknell D (2006) Urban scene analysis from SAR image sequences. In: Proceedings of SPIE algorithms for synthetic aperture radar imagery XIII, vol 6237Google Scholar
  9. Jahangir M, Blacknell D, Moate CP, Hill RD (2007) Extracting information from shadows in SAR imagery. In: IEEE Proceedings of the international conference on machine vision, pp 107–112Google Scholar
  10. Moate CP, Denton L (2006) SAR image delineation of multiple targets in close proximity. In: Proceedings of 6th European conference on synthetic aperture radar, VDE Verlag, DresdenGoogle Scholar
  11. Schreier G (1993) Geometrical properties of SAR images. In: Schreier G. (ed) SAR geocoding: data and systems. Wichmann, Karlsruhe, pp 103–134Google Scholar
  12. Schwaebisch M, Moreira J (1999) The high-resolution airborne interferometric SAR AeS-1. In: Proceedings of the fourth international airborne remote sensing conference and exhibition, pp 540–547Google Scholar
  13. Simonetto E, Oriot H, Garello R (2005) Rectangular building extraction from stereoscopic airborne radar images. IEEE Trans Geosci Remote Sens 43(10):2386–2395CrossRefGoogle Scholar
  14. Soergel U (2003) Iterative Verfahren zur Detektion und Rekonstruktion von Gebäuden in SAR- und InSAR-Daten. Dissertation, Leibniz Universität Hannover, GermanyGoogle Scholar
  15. Soergel U, Thoennessen U, Stilla U (2003) Iterative building reconstruction in multi-aspect InSAR data. In: Maas HG, Vosselman G, Streilein A (eds) 3-D reconstruction from airborne laserscanner and InSAR data, IntArchPhRS, vol 34, part 3/W13, pp 186–192Google Scholar
  16. Steger C (1998) An unbiased detector of curvilinear structures. IEEE Trans Pattern Anal Mach Intell 20(2):113–125CrossRefGoogle Scholar
  17. Thiele A, Cadario E, Schulz K, Thoennessen U, Soergel U (2007a) Building recognition from multi-aspect high-resolution InSAR data in urban area. IEEE Trans Geosci Remote Sens 45(11):3583–3593CrossRefGoogle Scholar
  18. Thiele A, Cadario E, Schulz K, Thoennessen U, Soergel U (2007b) InSAR phase profiles at building locations. In: Proceeding of ISPRS photogrammetric image analysis, vol 36, part 3/W49A, pp 203–208Google Scholar
  19. Thiele A, Cadario E, Schulz K, Soergel U (2009) Analysis of gable-roofed building signatures in multiaspect InSAR data. IEEE Geoscience and Remote Sensing Letters, Digital Object Identifier: 10.1109/LGRS.2009.2023476, online availableGoogle Scholar
  20. Touzi R, Lopes A, Bousquet P (1988) A statistical and geometrical edge detector for SAR images. IEEE Trans Geosci Remote Sens 26(6):764–773CrossRefGoogle Scholar
  21. Tupin F, Maitre H, Mangin JF, Nicolas JM, Pechersky E (1998) Detection of linear features in SAR images: application to road network extraction. IEEE Trans Geosci Remote Sens 36(2):434–453CrossRefGoogle Scholar
  22. Xu F, Jin YQ (2007) Automatic reconstruction of building objects from multiaspect meter-resolution SAR images. IEEE Trans Geosci Remote Sens 45(7):2336–2353CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Fraunhofer-IOSB, SceneanalysisEttlingenGermany
  2. 2.Karlsruhe Institute of Technology (KIT), Institute of Photogrammetry and Remote Sensing (IPF)KarlsruheGermany
  3. 3.IPI Institute of Photogrammetry and GeoInformation, Leibniz Universität HannoverHannoverGermany

Personalised recommendations