Advertisement

Object Recognition from Polarimetric SAR Images

  • Ronny Hänsch
  • Olaf Hellwich
Chapter
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 15)

Abstract

In general, object recognition from images is concerned with separating a connected group of object pixels from background pixels and identifying or classifying the object. The indication of the image area covered by the object makes information which is implicitly given by the group of pixels, explicit by naming the object. The implicit information can be contained in the measurement values of the pixels or in the locations of the pixels relative to each other. While the former represent radiometric properties, the latter is of geometric nature describing the shape or topology of the object.

Keywords

Object Recognition Training Image Synthetic Aperture Radar Synthetic Aperture Radar Image Synthetic Aperture Radar Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank the German Aerospace Center (DLR) for providing E-SAR and TerraSAR-X data. Furthermore, this work was supported by grant of DFG HE 2459/11.

References

  1. Bamler R, Eineder M (2008) The pyramids of Gizeh seen by TerraSAR-X – a prime example for unexpected scattering mechanisms in SAR. IEEE Geosci Remote Sens Lett 5(3):468–470CrossRefGoogle Scholar
  2. Borenstein E, Ullman S (2008) Combined top-down/bottom-up segmentation. IEEE Trans Pattern Anal Mach Intell 30(12):2109–2125CrossRefGoogle Scholar
  3. Cloude S-R, Pottier E (1996) An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans Geosci Remote Sens 35(1):68–78CrossRefGoogle Scholar
  4. Cloude S-R, Pottier E (1996) A review of target decomposition theorems in radar polarimetry. IEEE Trans Geosci Remote Sens 34(2):498–518CrossRefGoogle Scholar
  5. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Learn 24(5):603–619CrossRefGoogle Scholar
  6. Dana R, Knepp D (1986) The impact of strong scintillation on space based radar design II: noncoherent detection. IEEE Trans Aerosp Electron Syst AES-22:34–46CrossRefGoogle Scholar
  7. De Grandi G et al (2004) A wavelet multiresolution technique for polarimetric texture analysis and segmentation of SAR images. In Proceedings of the IEEE International Geoscience Remote Sensing Symposium, IGARSS’04, vol 1, pp 710–713Google Scholar
  8. Delignon Y et al (1997) Statistical modeling of ocean SAR images. IEEE Proc Radar Son Nav 144(6):348–354CrossRefGoogle Scholar
  9. Ferro-Famil L et al (2003) Scene characterization using sub-aperture polarimetric interferometric SAR data. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium 2003, IGARSS’03, vol 2, pp 702–704Google Scholar
  10. Förstner W, Gülch E (1987) A fast operator for detection and precise location of distinct points, corners and centers of circular features. In: Proceedings of the ISPRS intercommission workshop on fast processing of photogrammetric data, Interlaken, Switzerland, pp 281–305Google Scholar
  11. Hagg W (1998) Merkmalbasierte Klassifikation von SAR-Satellitenbilddaten. Dissertation, University Karlsruhe, Fortschritt-Berichte VDI, Reihe 10, no. 568, VDI Verlag, DüsseldorfGoogle Scholar
  12. Harris C, Stephens M (1988) A combined corner and edge detector. In: Proceedings of the 4th Alvey vision conference, Manchester, England. The British Machine Vision Association and Society for Pattern Recognition (BMVA), see http://www.bmva.org/bmvc, pp 17–151
  13. Hawkins J (2004) On intelligence. Times Book, ISBN-10 0805074562Google Scholar
  14. Hänsch R, Hellwich O (2008) Weighted pyramid linking for segmentation of fully-polarimetric SAR data. In: Proceedings of ISPRS 2008 – International archives of photogrammetry and remote sensing, vol XXXVII/B7a, Beijing, China, pp 95–100Google Scholar
  15. Hänsch R et al (2008) Clustering by deterministic annealing and Wishart based distance measures for fully-polarimetric SAR-data. In: Proceedings of EUSAR 2008, vol 3, Friedrichshafen, Germany, pp 419–422Google Scholar
  16. He W et al (2008) Building extraction from polarimetric SAR data using mean shift and conditional random fields. In: Proceedings of EUSAR 2008, vol 3, Friedrichshafen, Germany, pp 439–442Google Scholar
  17. Jakeman E, Pusey N (1976) A model for non-Rayleigh sea echo. IEEE Trans Anten Propag AP-24:806–814CrossRefGoogle Scholar
  18. Jäger M, Hellwich O (2005) Saliency and salient region detection in sar polarimetry. In: Proceedings of IGARSS’05, vol 4, Seoul, Korea, pp 2791–2794Google Scholar
  19. Kadir T, Brady M (2001) Scale, saliency and image description. Int J Comput Vis 45(2):83–105CrossRefGoogle Scholar
  20. Lee JS, Pottier E (2009) Polarimetric radar imaging: from basics to applications. CRC press, ISBN-10 142005497XGoogle Scholar
  21. Lee JS et al (1999) Unsupervised classification using polarimetric decomposition and the complex wishart classifier. IEEE Trans Geosci Remote Sens 37(5):2249–2258CrossRefGoogle Scholar
  22. Leibe B et al (2004) Combined object categorization and segmentation with an implicit shape model. In: ECCV04 workshop on statistical learning in computer vision, Prague, pp 17–32Google Scholar
  23. Lopes A et al (1990) Statistical distribution and texture in multilook and complex SAR images. In Proceedings IGARSS, Washington, pp 20–24Google Scholar
  24. Marr D (1982) Vision: a computational investigation into the human representation and processing of visual information. W. H. Freeman and Co., ISBN 0-7167-1284-9Google Scholar
  25. Massonnet D, Souyris J-C (2008) Imaging with synthetic aperture radar. EPFL Press, ISBN 0849382394CrossRefGoogle Scholar
  26. Muirhead RJ (2005) Aspects of multivariate statistical theory. Wiley, ISBN-10: 0471094420Google Scholar
  27. Oliver C (1993) Optimum texture estimators for SAR clutter. J Phys D Appl Phys 26:1824–1835CrossRefGoogle Scholar
  28. Pizlo Z (2008) 3D shape: its unique place in visual perception. ISBN-10 0-262-16251-2Google Scholar
  29. Quartulli M, Datcu M (2004) Stochastic geometrical modeling for built-up area understanding from a single SAR intensity image with meter resolution. IEEE Trans Geosci Remote Sens 42(9):1996–2003CrossRefGoogle Scholar
  30. Reigber A et al (2007a) Detection and classification of urban structures based on high-resolution SAR imagery. In: Urban remote sensing joint event, pp 1–6Google Scholar
  31. Reigber A et al (2007b) Polarimetric fuzzy k-means classification with consideration of spatial context. In: Proceedings of POLINSAR07, Frascati, ItalyGoogle Scholar
  32. Schneider RZ et al (2006) Polarimetric and interferometric characterization of coherent scatterers in urban areas. IEEE Trans Geosci Remote Sens 44(4):971–984CrossRefGoogle Scholar
  33. Schou J et al (2003) CFAR edge detector for polarimetric SAR images. IEEE Trans Geosci Remote Sens 41(1):20–32CrossRefGoogle Scholar
  34. Tison C et al (2004) A new statistical model for markovian classification of urban areas in high-resolution SAR images. IEEE Trans Geosci Remote Sens 42(10):2046–2057CrossRefGoogle Scholar
  35. Xu F, Jin Y-Q (2007) Automatic reconstruction of building objects from multiaspect meter-resolution SAR images. IEEE Trans Geosci Remote Sens 45(7):2336–2353CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Technische Universität, Berlin Computer Vision and Remote SensingBerlinGermany

Personalised recommendations