Rapid Mapping Using Airborne and Satellite SAR Images

  • Fabio Dell’Acqua
  • Paolo Gamba
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 15)


Historically, Synthetic Aperture Radar (SAR) data was made available later than optical data for the purpose of land cover classification (Landsat Legacy Project Website,; NASA Jet Propulsion Laboratory: Missions,$=$Seasat); in more recent times, the milestone of spaceborne meter resolution was reached by multispectral optical data first (Ikonos; GEOEye Imagery Sources,, followed a few years later by radar data (COSMO/SkyMed [Caltagirone et al. 2001] and TerraSAR-X [Werninghaus et al. 2004]). As a consequence, more experience has been accumulated on the extraction of cartographic features from optical rather than SAR data, although in some cases radar data is highly recommendable because of frequent cloud cover (Attema et al. 1998) or because the information of interest is better visible at the microwave frequencies rather than at the optical ones (Kurosu et al. 1995).


Road Network Synthetic Aperture Radar Synthetic Aperture Radar Image Synthetic Aperture Radar Data Road Extraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to acknowledge the Italian Space Agency and the Italian Civil Protection Department for providing the COSMO/SkyMed image used in the examples of rapid mapping, the German Space Agency (DLR) for providing the TerraSAR-X image, and Dr. Gianni Lisini for performing the processing steps discussed in this chapter.


  1. Aldrighi M, Dell’Acqua F, Lisini G (2009) Tile mapping of urban area extent in VHR SAR images. In: Proceedings of the 5th IEEE/ISPRS joint event on remote sensing over urban areas, Shanghai, China, 20–22 May 2009Google Scholar
  2. Askne J, Santoro M, Smith G, Fransson JES (2003) Multitemporal repeat-pass SAR interferometry of boreal forests. IEEE Trans Geosci Remote Sens 41(7):1540–1550CrossRefGoogle Scholar
  3. Attema EPW, Duchossois G, Kohlhammer, G (1998) ERS-1/2 SAR land applications: overview and main results. In: Proceedings of IGARSS’08, vol 4, pp 1796–1798Google Scholar
  4. Bajcsy R, Tavakoli M (September 1976) Computer recognition of roads from satellite pictures. IEEE Trans Syst Man Cybern SMC-6:623–637CrossRefGoogle Scholar
  5. Bentabet L, Jodouin S, Ziou D, Vaillancourt J (2003) Road vectors update using SAR imagery: a snake-based method. IEEE Trans Geosci Remote Sens 41(8):1785–1803CrossRefGoogle Scholar
  6. Borghys D, Perneel C, Acheroy M (2000) A multivariate contour detector for high-resolution polarimetric SAR images. In: Proceedings of the 15th International Conference Pattern Recognition, vol 3, pp 646–651, 3–7 September 2000Google Scholar
  7. Caltagirone F, Spera P, Gallon A, Manoni G, Bianchi L (2001) COSMO-Skymed: a dual use Earth observation constellation. In: Proceedings of the 2nd international workshop on satellite constellation and formation flying, pp 87–94Google Scholar
  8. Canny J (November 1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell PAMI-8(11):679–698CrossRefGoogle Scholar
  9. Chanussot J, Mauris G, Lambert P (May 1999) Fuzzy fusion techniques for linear features detection in multitemporal SAR images. IEEE Trans Geosci Remote Sens 37(3):2287–2297Google Scholar
  10. Chesnaud C, Réfrégier P, Boulet V (November 1999) Statistical region snake-based segmentation adapted to different physical noise models. IEEE Trans Pattern Anal Mach Intell 21(11):1145–1157CrossRefGoogle Scholar
  11. Dell’Acqua F, Gamba P (October 2001) Detection of urban structures in SAR images by robust fuzzy clustering algorithms: the example of street tracking. IEEE Trans Geosci Remote Sens 39(10):2287–2297CrossRefGoogle Scholar
  12. Dell’Acqua F, Gamba P (January 2003) Texture-based characterization of urban environments on satellite SAR images. IEEE Trans Geosci Remote Sens 41(1):153–159CrossRefGoogle Scholar
  13. Dell’Acqua F, Gamba P, Lisini G (2002) Extraction and fusion of street network from fine resolution SAR data. In: Proceedings of IGARSS, vol 1. Toronto, ON, Canada, pp 89–91, June 2002Google Scholar
  14. Dell’Acqua F, Gamba P, Lisini G (2003). Road map extraction by multiple detectors in fine spatial resolution SAR data. Can J Remote Sens 29(4):481–490Google Scholar
  15. Dell’Acqua F, Gamba P, Lisini G (2005) Road extraction aided by adaptive directional filtering and template matching. In: Proceedings of the third GRSS/ISPRS joint workshop on remote sensing over urban areas (URBAN 2005), Tempe, AZ, 14–16 March 2005 (on CD-ROM)Google Scholar
  16. Dell’Acqua F, Gamba P, Trianni G (March 2006) Semi-automatic choice of scale-dependent features for satellite SAR image classification. Pattern Recognit Lett 27(4):244CrossRefGoogle Scholar
  17. Dell’Acqua F, Gamba P, Lisini G (2008) Rapid mapping of high-resolution SAR scenes. ISPRS J Photogramm Remote Sens, doi:10.1016/j.isprsjprs.2008.09.006Google Scholar
  18. Dell’Acqua F, Lisini G, Gamba P (2009) Experiences in optical and SAR imagery analysis for damage assessment in the Wuhan, May 2008 earthquake. In: Proceedings of IGARSS 2009, Cape Town, South Africa, 13–17 July 2009Google Scholar
  19. Dekker RJ (September 2003) Texture analysis and classification of ERS SAR images for map updating of urban areas in the Netherlands. IEEE Trans Geosci Remote Sens 41(9):1950–1958CrossRefGoogle Scholar
  20. Duskunovic I, Heene G, Philips W, Bruyland I (2000) Urban area selection in SAR imagery using a new speckle reduction technique and Markov random field texture classification. In: Proceedings of IGARSS, vol 2, pp 636–638, July 2000Google Scholar
  21. Fischler MA, Tenenbaum JM, Wolf HC (1981) Detection of roads and linear structures in low resolution aerial imagery using a multisource knowledge integration technique. Comput Graph Image Process 15(3):201–223CrossRefGoogle Scholar
  22. Gamba P, Houshmand B (1999) Three-dimensional road network by fusion of polarimetric and interferometric SAR data. In: Proceedings of IGARSS099, vol 1, pp 302–304Google Scholar
  23. Gamba P, Dell’Acqua F, Lisini G (2007) Raster to vector in 2D urban data. In: Proceedings of joint urban remote sensing event 2007, Paris, France, 13–15 April (on CD-ROM)Google Scholar
  24. Gouinaud C, Tupin F (1996) Potential and use of radar images for characterization and detection of urban areas. In: Proceedings of IGARSS, vol 1. Lincoln, NE, pp 474–476, May 1996Google Scholar
  25. Hall O, Falorni G, Bras RL (2005) Characterization and quantification of data voids in the shuttle Radar topography mission data, IEEE Geosci Remote Sens Lett 2(2):177–181CrossRefGoogle Scholar
  26. He C, Xia G-S, Sun H (2006) An adaptive and iterative method of urban area extraction from SAR images. IEEE Geosci Remote Sens Lett 3(4):504–507CrossRefGoogle Scholar
  27. Heremans R, Willekens A, Borghys D, Verbeeck B, Valckenborgh J, Acheroy M, Perneel C (June 2005) Automatic detection of flooded areas on ENVISAT/ASAR images using an object-oriented classification technique and an active contour algorithm. In: Proceedings of the 31st international symposium on remote sensing of environment. Saint Petersburg, Russia, pp 20–24.
  28. Hess L, Melack J, Simonett D (1990) Radar detection of flooding areas beneath the forest canopy: a review. Int J Remote Sens 11(5):1313–1325CrossRefGoogle Scholar
  29. Horritt M, Mason D, Cobby D, Davenport I, Bates P (2003) Waterline mapping in flooded vegetation from airborne SAR imagery. Remote Sens Environ 85:271–281CrossRefGoogle Scholar
  30. Jeon B, Jang J, Hong K (1999) Road detection in spaceborne SAR images based on ridge extraction. In: Proceedings of ICIP, vol. 2. Kobe, Japan, pp 735–739Google Scholar
  31. Jeon B-K, Jang J-H, Hong K-S (January 2002) Road detection in spaceborne SAR images using a genetic algorithm. IEEE Trans Geosci Remote Sens 40(1):22–29CrossRefGoogle Scholar
  32. Kurosu T, Fujita M, Chiba K (1995) Monitoring of rice crop growth from space using the ERS-1 C-band SAR. IEEE Trans Geosci Remote Sens 33(4):1092–1096CrossRefGoogle Scholar
  33. Landsat Legacy Project Website.
  34. NASA Jet Propulsion Laboratory: Missions. SEASAT.$=$Seasat
  35. Lisini G, Tison C, Tupin F, Gamba P (2006) Feature fusion to improve road network extraction in high-resolution SAR images. IEEE Geosci Remote Sens Lett 3(2):217–221CrossRefGoogle Scholar
  36. McKeown DM, Denlinger L (1988) Cooperative methods for road tracking in aerial imagery. In: Proceedings of CVPR, Ann Arbor, MI, pp 662–672Google Scholar
  37. Mena JB (December 2003) State of the art on automatic road extraction for GIS update: a novel classification. Pattern Recognit Lett 24(16):3037–3058CrossRefGoogle Scholar
  38. Negri M, Gamba P, Lisini G, Tupin F (2006) Junction-aware extraction and regularization of urban road networks in high-resolution SAR images. IEEE Trans Geosci Remote Sens 44(10): 2962–2971CrossRefGoogle Scholar
  39. Pesaresi M, Gerhardinger A, Kayitakire F (2007) Monitoring settlement dynamics by anisotropic textural analysis by panchromatic VHR data. In: Proceedings of joint urban remote sensing event 2007, Paris, 11–13 April 2007 (on CD-ROM)Google Scholar
  40. Service Régional de Traitement d’Image et de Télédétection (SERTIT).
  41. Soille P, Pesaresi M (2002) Advances in mathematical morphology applied to geoscience and remote sensing. IEEE Trans Geosci Remote Sens 40(9):2042–2055CrossRefGoogle Scholar
  42. Stilla U, Soergel U, Thoennessen U (2003) Potential and limits of InSAR data for building reconstruction in built-up areas. ISPRS J Photogramm Remote Sens 58(1–2):113–123CrossRefGoogle Scholar
  43. The International Charter – Space and Major Disasters.
  44. Tison C, Nicolas JM, Tupin F, Maitre H (October 2004) A new statistical model for Markovian classification of urban areas in high-resolution SAR images. IEEE Trans Geosci Remote Sens 42(10):2046–2057CrossRefGoogle Scholar
  45. Treitz PM, Rotunno OF, Howarth PJ, Soulis ED (1996) Textural processing of multi-polarization SAR for agricultural crop classification. In: Proceedings of IGARSS’96, pp 1986–1988Google Scholar
  46. Tupin F, Maitre H, Mangin J-F, Nicolas J-M, Pechersky E (March 1998) Detection of linear features in SAR images: application to road network extraction. IEEE Trans Geosci Remote Sens 36(2):434–453CrossRefGoogle Scholar
  47. Tupin F, Houshmand B, Datcu M (2002) Road detection in dense urban areas using SAR imagery and the usefulness of multiple views. IEEE Trans Geosci Remote Sens 40(11):2405–2414CrossRefGoogle Scholar
  48. Ulaby FT, Kouyate F, Brisco B, Williams THL (March 1986) Textural information in SAR images. IEEE Trans Geosci Remote Sens GE-24(2):235–245. ISSN: 0196-2892. Digital Object Identifier: 10.1109/TGRS.1986.289643CrossRefGoogle Scholar
  49. UNOSAT is the UN Institute for Training and Research (UNITAR) Operational Satellite Applications Programme.
  50. Werninghaus R, Balzer W, Buckreuss St, Mittermayer J, Mühlbauer P (2004) The TerraSAR-X mission. EUSAR, Ulm, GermanyGoogle Scholar
  51. Wessel B (2004) Context-supported road extraction from SAR imagery: transition from rural to built-up areas. In: Proceedings of the EUSAR, Ulm, Germany, pp 399–402, May 2004Google Scholar
  52. Yu S, Berthod M, Giraudon G (July 1999) Toward robust analysis of satellite images using map information-application to urban area detection. IEEE Trans Geosci Remote Sens 37(4): 1925–1939CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of ElectronicsUniversity of PaviaPaviaItaly

Personalised recommendations