Skip to main content

Rapid Mapping Using Airborne and Satellite SAR Images

  • Chapter
  • First Online:
Radar Remote Sensing of Urban Areas

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 15))

Abstract

Historically, Synthetic Aperture Radar (SAR) data was made available later than optical data for the purpose of land cover classification (Landsat Legacy Project Website, http://library01.gsfc.nasa.gov/landsat/; NASA Jet Propulsion Laboratory: Missions, http://jpl.nasa.gov/missions/missiondetails.cfm?mission$=$Seasat); in more recent times, the milestone of spaceborne meter resolution was reached by multispectral optical data first (Ikonos; GEOEye Imagery Sources, http://www.geoeye.com/CorpSite/products/imagery-sources/Default.aspx#ikonos), followed a few years later by radar data (COSMO/SkyMed [Caltagirone et al. 2001] and TerraSAR-X [Werninghaus et al. 2004]). As a consequence, more experience has been accumulated on the extraction of cartographic features from optical rather than SAR data, although in some cases radar data is highly recommendable because of frequent cloud cover (Attema et al. 1998) or because the information of interest is better visible at the microwave frequencies rather than at the optical ones (Kurosu et al. 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldrighi M, Dell’Acqua F, Lisini G (2009) Tile mapping of urban area extent in VHR SAR images. In: Proceedings of the 5th IEEE/ISPRS joint event on remote sensing over urban areas, Shanghai, China, 20–22 May 2009

    Google Scholar 

  • Askne J, Santoro M, Smith G, Fransson JES (2003) Multitemporal repeat-pass SAR interferometry of boreal forests. IEEE Trans Geosci Remote Sens 41(7):1540–1550

    Article  Google Scholar 

  • Attema EPW, Duchossois G, Kohlhammer, G (1998) ERS-1/2 SAR land applications: overview and main results. In: Proceedings of IGARSS’08, vol 4, pp 1796–1798

    Google Scholar 

  • Bajcsy R, Tavakoli M (September 1976) Computer recognition of roads from satellite pictures. IEEE Trans Syst Man Cybern SMC-6:623–637

    Article  Google Scholar 

  • Bentabet L, Jodouin S, Ziou D, Vaillancourt J (2003) Road vectors update using SAR imagery: a snake-based method. IEEE Trans Geosci Remote Sens 41(8):1785–1803

    Article  Google Scholar 

  • Borghys D, Perneel C, Acheroy M (2000) A multivariate contour detector for high-resolution polarimetric SAR images. In: Proceedings of the 15th International Conference Pattern Recognition, vol 3, pp 646–651, 3–7 September 2000

    Google Scholar 

  • Caltagirone F, Spera P, Gallon A, Manoni G, Bianchi L (2001) COSMO-Skymed: a dual use Earth observation constellation. In: Proceedings of the 2nd international workshop on satellite constellation and formation flying, pp 87–94

    Google Scholar 

  • Canny J (November 1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell PAMI-8(11):679–698

    Article  Google Scholar 

  • Chanussot J, Mauris G, Lambert P (May 1999) Fuzzy fusion techniques for linear features detection in multitemporal SAR images. IEEE Trans Geosci Remote Sens 37(3):2287–2297

    Google Scholar 

  • Chesnaud C, Réfrégier P, Boulet V (November 1999) Statistical region snake-based segmentation adapted to different physical noise models. IEEE Trans Pattern Anal Mach Intell 21(11):1145–1157

    Article  Google Scholar 

  • Dell’Acqua F, Gamba P (October 2001) Detection of urban structures in SAR images by robust fuzzy clustering algorithms: the example of street tracking. IEEE Trans Geosci Remote Sens 39(10):2287–2297

    Article  Google Scholar 

  • Dell’Acqua F, Gamba P (January 2003) Texture-based characterization of urban environments on satellite SAR images. IEEE Trans Geosci Remote Sens 41(1):153–159

    Article  Google Scholar 

  • Dell’Acqua F, Gamba P, Lisini G (2002) Extraction and fusion of street network from fine resolution SAR data. In: Proceedings of IGARSS, vol 1. Toronto, ON, Canada, pp 89–91, June 2002

    Google Scholar 

  • Dell’Acqua F, Gamba P, Lisini G (2003). Road map extraction by multiple detectors in fine spatial resolution SAR data. Can J Remote Sens 29(4):481–490

    Google Scholar 

  • Dell’Acqua F, Gamba P, Lisini G (2005) Road extraction aided by adaptive directional filtering and template matching. In: Proceedings of the third GRSS/ISPRS joint workshop on remote sensing over urban areas (URBAN 2005), Tempe, AZ, 14–16 March 2005 (on CD-ROM)

    Google Scholar 

  • Dell’Acqua F, Gamba P, Trianni G (March 2006) Semi-automatic choice of scale-dependent features for satellite SAR image classification. Pattern Recognit Lett 27(4):244

    Article  Google Scholar 

  • Dell’Acqua F, Gamba P, Lisini G (2008) Rapid mapping of high-resolution SAR scenes. ISPRS J Photogramm Remote Sens, doi:10.1016/j.isprsjprs.2008.09.006

    Google Scholar 

  • Dell’Acqua F, Lisini G, Gamba P (2009) Experiences in optical and SAR imagery analysis for damage assessment in the Wuhan, May 2008 earthquake. In: Proceedings of IGARSS 2009, Cape Town, South Africa, 13–17 July 2009

    Google Scholar 

  • Dekker RJ (September 2003) Texture analysis and classification of ERS SAR images for map updating of urban areas in the Netherlands. IEEE Trans Geosci Remote Sens 41(9):1950–1958

    Article  Google Scholar 

  • Duskunovic I, Heene G, Philips W, Bruyland I (2000) Urban area selection in SAR imagery using a new speckle reduction technique and Markov random field texture classification. In: Proceedings of IGARSS, vol 2, pp 636–638, July 2000

    Google Scholar 

  • Fischler MA, Tenenbaum JM, Wolf HC (1981) Detection of roads and linear structures in low resolution aerial imagery using a multisource knowledge integration technique. Comput Graph Image Process 15(3):201–223

    Article  Google Scholar 

  • Gamba P, Houshmand B (1999) Three-dimensional road network by fusion of polarimetric and interferometric SAR data. In: Proceedings of IGARSS099, vol 1, pp 302–304

    Google Scholar 

  • Gamba P, Dell’Acqua F, Lisini G (2007) Raster to vector in 2D urban data. In: Proceedings of joint urban remote sensing event 2007, Paris, France, 13–15 April (on CD-ROM)

    Google Scholar 

  • GEOEye Imagery Sources. http://www.geoeye.com/CorpSite/products/imagery-sources/Default. aspx#ikonos

  • Gouinaud C, Tupin F (1996) Potential and use of radar images for characterization and detection of urban areas. In: Proceedings of IGARSS, vol 1. Lincoln, NE, pp 474–476, May 1996

    Google Scholar 

  • Hall O, Falorni G, Bras RL (2005) Characterization and quantification of data voids in the shuttle Radar topography mission data, IEEE Geosci Remote Sens Lett 2(2):177–181

    Article  Google Scholar 

  • He C, Xia G-S, Sun H (2006) An adaptive and iterative method of urban area extraction from SAR images. IEEE Geosci Remote Sens Lett 3(4):504–507

    Article  Google Scholar 

  • Heremans R, Willekens A, Borghys D, Verbeeck B, Valckenborgh J, Acheroy M, Perneel C (June 2005) Automatic detection of flooded areas on ENVISAT/ASAR images using an object-oriented classification technique and an active contour algorithm. In: Proceedings of the 31st international symposium on remote sensing of environment. Saint Petersburg, Russia, pp 20–24. http://www.isprs.org/publications/related/ISRSE/html/papers/219.pdf

  • Hess L, Melack J, Simonett D (1990) Radar detection of flooding areas beneath the forest canopy: a review. Int J Remote Sens 11(5):1313–1325

    Article  Google Scholar 

  • Horritt M, Mason D, Cobby D, Davenport I, Bates P (2003) Waterline mapping in flooded vegetation from airborne SAR imagery. Remote Sens Environ 85:271–281

    Article  Google Scholar 

  • Jeon B, Jang J, Hong K (1999) Road detection in spaceborne SAR images based on ridge extraction. In: Proceedings of ICIP, vol. 2. Kobe, Japan, pp 735–739

    Google Scholar 

  • Jeon B-K, Jang J-H, Hong K-S (January 2002) Road detection in spaceborne SAR images using a genetic algorithm. IEEE Trans Geosci Remote Sens 40(1):22–29

    Article  Google Scholar 

  • Kurosu T, Fujita M, Chiba K (1995) Monitoring of rice crop growth from space using the ERS-1 C-band SAR. IEEE Trans Geosci Remote Sens 33(4):1092–1096

    Article  Google Scholar 

  • Landsat Legacy Project Website. http://library01.gsfc.nasa.gov/landsat/

  • NASA Jet Propulsion Laboratory: Missions. SEASAT. http://jpl.nasa.gov/missions/missiondetails.cfm?mission$=$Seasat

  • Lisini G, Tison C, Tupin F, Gamba P (2006) Feature fusion to improve road network extraction in high-resolution SAR images. IEEE Geosci Remote Sens Lett 3(2):217–221

    Article  Google Scholar 

  • McKeown DM, Denlinger L (1988) Cooperative methods for road tracking in aerial imagery. In: Proceedings of CVPR, Ann Arbor, MI, pp 662–672

    Google Scholar 

  • Mena JB (December 2003) State of the art on automatic road extraction for GIS update: a novel classification. Pattern Recognit Lett 24(16):3037–3058

    Article  Google Scholar 

  • Negri M, Gamba P, Lisini G, Tupin F (2006) Junction-aware extraction and regularization of urban road networks in high-resolution SAR images. IEEE Trans Geosci Remote Sens 44(10): 2962–2971

    Article  Google Scholar 

  • Pesaresi M, Gerhardinger A, Kayitakire F (2007) Monitoring settlement dynamics by anisotropic textural analysis by panchromatic VHR data. In: Proceedings of joint urban remote sensing event 2007, Paris, 11–13 April 2007 (on CD-ROM)

    Google Scholar 

  • Service Régional de Traitement d’Image et de Télédétection (SERTIT). http://sertit.u-strasbg.fr/

  • Soille P, Pesaresi M (2002) Advances in mathematical morphology applied to geoscience and remote sensing. IEEE Trans Geosci Remote Sens 40(9):2042–2055

    Article  Google Scholar 

  • Stilla U, Soergel U, Thoennessen U (2003) Potential and limits of InSAR data for building reconstruction in built-up areas. ISPRS J Photogramm Remote Sens 58(1–2):113–123

    Article  Google Scholar 

  • The International Charter – Space and Major Disasters. http://www.disasterscharter.org/

  • Tison C, Nicolas JM, Tupin F, Maitre H (October 2004) A new statistical model for Markovian classification of urban areas in high-resolution SAR images. IEEE Trans Geosci Remote Sens 42(10):2046–2057

    Article  Google Scholar 

  • Treitz PM, Rotunno OF, Howarth PJ, Soulis ED (1996) Textural processing of multi-polarization SAR for agricultural crop classification. In: Proceedings of IGARSS’96, pp 1986–1988

    Google Scholar 

  • Tupin F, Maitre H, Mangin J-F, Nicolas J-M, Pechersky E (March 1998) Detection of linear features in SAR images: application to road network extraction. IEEE Trans Geosci Remote Sens 36(2):434–453

    Article  Google Scholar 

  • Tupin F, Houshmand B, Datcu M (2002) Road detection in dense urban areas using SAR imagery and the usefulness of multiple views. IEEE Trans Geosci Remote Sens 40(11):2405–2414

    Article  Google Scholar 

  • Ulaby FT, Kouyate F, Brisco B, Williams THL (March 1986) Textural information in SAR images. IEEE Trans Geosci Remote Sens GE-24(2):235–245. ISSN: 0196-2892. Digital Object Identifier: 10.1109/TGRS.1986.289643

    Article  Google Scholar 

  • UNOSAT is the UN Institute for Training and Research (UNITAR) Operational Satellite Applications Programme. http://unosat.web.cern.ch/unosat/

  • Werninghaus R, Balzer W, Buckreuss St, Mittermayer J, Mühlbauer P (2004) The TerraSAR-X mission. EUSAR, Ulm, Germany

    Google Scholar 

  • Wessel B (2004) Context-supported road extraction from SAR imagery: transition from rural to built-up areas. In: Proceedings of the EUSAR, Ulm, Germany, pp 399–402, May 2004

    Google Scholar 

  • Yu S, Berthod M, Giraudon G (July 1999) Toward robust analysis of satellite images using map information-application to urban area detection. IEEE Trans Geosci Remote Sens 37(4): 1925–1939

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Italian Space Agency and the Italian Civil Protection Department for providing the COSMO/SkyMed image used in the examples of rapid mapping, the German Space Agency (DLR) for providing the TerraSAR-X image, and Dr. Gianni Lisini for performing the processing steps discussed in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Dell’Acqua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dell’Acqua, F., Gamba, P. (2010). Rapid Mapping Using Airborne and Satellite SAR Images. In: Soergel, U. (eds) Radar Remote Sensing of Urban Areas. Remote Sensing and Digital Image Processing, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3751-0_2

Download citation

Publish with us

Policies and ethics