Advertisement

Atom Interferometers and Optical Clocks: New Quantum Sensors Based on Ultracold Atoms for Gravitational Tests in Earth Laboratories and in Space

  • Guglielmo M. Tino
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 367)

Abstract

Cooling and trapping of neutral atoms has been one of the most active fields of research in physics in recent years. Several methods were demonstrated to reach temperatures as low as a few nanokelvin allowing, for example, the investigation of quantum degenerate gases. The ability to control the quantum degrees of freedom of atoms opens the way to applications for precision measurement of fundamental physical quantities. Here, experiments we are performing using atom interferometry to determine the gravitational constant G and test the Newtonian gravitational law at micrometric distances will be presented. Other experiments in progress, planned or being considered using atom interferometers and new optical atomic clocks in ground laboratories and in space are also discussed.

Keywords

Optical Lattice Source Masse Atomic Clock Newtonian Gravity Optical Clock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Chu, C. Cohen-Tannoudji, and W.D. Phillips, Nobel Lectures in Physics 1997, Rev. Mod. Phys. 70, 685 (year1998).Google Scholar
  2. 2.
    E.A. Cornell and C.E. Wieman, Nobel Lectures in Physics 2001, Rev. Mod. Phys. 74, 875, 1131 (2002); W. Ketterle, ibid., 1131 (2002).ADSCrossRefGoogle Scholar
  3. 3.
    J. Hall and T. Haensch, Nobel Lectures in Physics 2005, Rev. Mod. Phys. 78, 1279 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    A. Peters, K.Y. Chung, and S. Chu, Metrologia 38, 25 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    M.J. Snadden, J.M. McGuirk, P. Bouyer, K.G. Haritos, and M.A. Kasevich, Phys. Rev. Lett. 81, 971 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    J.M. McGuirk, G.T. Foster, J.B. Fixler, M.J. Snadden, and M.A. Kasevich, Phys. Rev. A 65, 033608 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    T.L. Gustavson, P. Bouyer, and M. Kasevich, Phys. Rev. Lett. 78, 2046 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    T.L. Gustavson, A. Landragin, and M.A. Kasevich, Class. Quantum Grav. 17, 2385 (2000).ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    D.S. Weiss, B.C. Young, and S. Chu, Phys. Rev. Lett. 70, 2706 (1993).ADSCrossRefGoogle Scholar
  10. 10.
    R. Battesti, P. Cladé, S. Guellati-Khélifa, C. Schwob, B. Grémaud, F. Nez, L. Julien, and F. Biraben, Phys. Rev. Lett. 92, 253001 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    P.R. Berman, ed., Atom interferometry (Academic press, Chestnut Hill, 1997).Google Scholar
  12. 12.
    S. Fray, C.A. Diez, T.W. Haensch, and M. Weitz, Phys. Rev. Lett. 93, 240404 (2004).ADSCrossRefGoogle Scholar
  13. 13.
    S. Dimopoulos, P. Graham, J. Hogan, and M. Kasevich, PRL 98, 111102 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    G.M. Tino, in 2001: A Relativistic Spacetime Odyssey - Proceedings of JH Workshop, Firenze, 2001 (I. Ciufolini, D. Dominici, L. Lusanna eds., World Scientific, 2003). Also, Tino G. M., Nucl. Phys. B 113, 289 (2003).Google Scholar
  15. 15.
    G. Ferrari, N. Poli, F. Sorrentino, and G.M. Tino, Phys. Rev. Lett. 97, 060402 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    Chiao, Y. Raymond, Speliotopoulos, and D. Achilles, Journal of Modern Optics 51(6-7), 861 (2004).ADSzbMATHGoogle Scholar
  17. 17.
    A. Roura, D. Brill, B. Hu, C. Misner, and W. Phillips, Phys. Rev. D 73, 084018 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    P. Delva, M.-C. Angonin, and P. Tourrenc, Phys. Lett. A 357, 249 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    G. Tino and F. Vetrano, Class. Quantum Grav. 24, 2167 (2007).ADSzbMATHCrossRefGoogle Scholar
  20. 20.
    N. Sneeuw, R. Rummel, and J. Müller, Class. Quantum Grav. 13, A113 (1996).ADSzbMATHCrossRefGoogle Scholar
  21. 21.
    M. Antezza, L.P. Pitaevskii, and S. Stringari, Phys. Rev. Lett. 95, 113202 (2005).ADSCrossRefGoogle Scholar
  22. 22.
    J.C. Long, H.W. Chan, A.B. Churnside, E.A. Gulbis, M.C.M. Varney, and J.C. Price, Nature 421, 922 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    S.J. Smullin, A.A. Geraci, D.M. Weld, J. Chiaverini, S. Holmes, and A. Kapitulnik, Phys. Rev D 72, 122001 (2005).ADSCrossRefGoogle Scholar
  24. 24.
    P.J. Mohr and B.N. Taylor, Rev. Mod. Phys. 77-1, 42 (2005).ADSGoogle Scholar
  25. 25.
    J. Stuhler, M. Fattori, T. Petelski, and G.M. Tino, J. Opt. B: Quantum Semiclass. Opt. 5, S75 (2003).ADSCrossRefGoogle Scholar
  26. 26.
    A. Bertoldi, G. Lamporesi, L. Cacciapuoti, M.D. Angelis, M. Fattori, T. Petelski, A. Peters, M. Prevedelli, J. Stuhler, and G.M. Tino, Eur. Phys. J. D 40, 271 (2006).ADSCrossRefGoogle Scholar
  27. 27.
    J.B. Fixler, G.T. Foster, J.M. McGuirk, and M. Kasevich, Science 315, 74 (2007).ADSCrossRefGoogle Scholar
  28. 28.
    R. Legere and K. Gibble, Phys. Rev. Lett. 81, 5780 (1998).ADSCrossRefGoogle Scholar
  29. 29.
    L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G.M. Tino, Rev. Sci. Instrum. 76, 053111 (2005).ADSCrossRefGoogle Scholar
  30. 30.
    J. Schurr, F. Nolting, and W. Kündig, Phys. Rev. Lett. 80, 1142 (1998).ADSCrossRefGoogle Scholar
  31. 31.
    M. Fattori, G. Lamporesi, T. Petelski, J. Stuhler, and G. Tino, Phys. Lett. A 318, 184 (2003).ADSzbMATHCrossRefGoogle Scholar
  32. 32.
    I. Bloch, Nat. Phys. 1, 253001 (2005, and references therein).Google Scholar
  33. 33.
    F. Bloch, Z. Phys. 52, 555 (1929).ADSCrossRefGoogle Scholar
  34. 34.
    M. Raizen, C. Salomon, and Q. Niu, Physics Today 50 (1997, and references therein).Google Scholar
  35. 35.
    M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, Nature 435, 321 (2005).ADSCrossRefGoogle Scholar
  36. 36.
    G. Ferrari, R.E. Drullinger, N. Poli, F. Sorrentino, and G. Tino, Phys. Rev. A 73, 23408 (2006).ADSCrossRefGoogle Scholar
  37. 37.
    T. Ido, Y. Isoya, and H. Katori, Phys. Rev. A 61, 061403(R) (2000).Google Scholar
  38. 38.
    B.P. Anderson and M.A. Kasevich, Science 282, 1686 (1998).ADSCrossRefGoogle Scholar
  39. 39.
    G. Roati, E. de Mirandes, F. Ferlaino, H. Ott, G. Modugno, and M. Inguscio, Phys. Rev. Lett. 92, 230402 (2004).ADSCrossRefGoogle Scholar
  40. 40.
    N. Poli, R.E. Drullinger, G. Ferrari, J. Léonard, F. Sorrentino, and G.M. Tino, Phys. Rev. A 71, 061403(R) (2005).ADSCrossRefGoogle Scholar
  41. 41.
    N. Ashcroft and N. Mermin, Solid State Physics (Saunders, 1976).Google Scholar
  42. 42.
    Independent measurements with an accelerometer at the level of the retro-reflecting mirror indicate a seismic noise consistent with the observed damping time.Google Scholar
  43. 43.
    S. Dimopoulos and A.A. Geraci, Phys. Rev. D 68, 124021 (2003).ADSCrossRefGoogle Scholar
  44. 44.
    D.M. Harber, J.M. Obrecht, J.M. McGuirk, and E.A. Cornell, Phys. Rev. A 72, 033610 (2005).ADSCrossRefGoogle Scholar
  45. 45.
    S. Kuhr, W. Alt, D. Schrader, M. Mueller, V. Gomer, and D. Meschede, Science 293, 278 (2001).ADSCrossRefGoogle Scholar
  46. 46.
    T. Udem, J. Reichert, R. Holzwarth, and T.W. Haensch, Phys. Rev. Lett. 82, 3568 (1999).ADSCrossRefGoogle Scholar
  47. 47.
    S.A. Diddams, D.J. Jones, J. Ye, S.T. Cundiff, J.L. Hall, J.K. Ranka, R.S. Windeler, R. Holzwarth, T. Udem, and T. Haensch, Phys. Rev. Lett. 84, 5102 (2000).ADSCrossRefGoogle Scholar
  48. 48.
    P. Wolf and G. Petit, Phys. Rev. A 56, 4405 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Dipartimento di Fisica and LENSUniversità di Firenze, Istituto Nazionale di Fisica Nucleare, Sezione di FirenzeSesto FiorentinoItaly

Personalised recommendations