Skip to main content

The LARES Space Experiment: LARES Orbit, Error Analysis and Satellite Structure

  • Chapter
  • First Online:

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 367))

Abstract

The LARES space experiment, by the Italian Space Agency (ASI), is based on the launch of a new laser ranged satellite, called LARES (LAser RElativity Satellite), using the new launch vehicle VEGA (Veicolo Europeo di Generazione. Avanzata, provided by ESA). LARES will have an altitude of about 1,450 km, orbital inclination of about 71. 5 and nearly zero eccentricity. The LARES satellite together with the satellites LAGEOS (LAser GEOdynamics Satellite launched by NASA) and LAGEOS 2 (built by ASI and launched by NASA and ASI) and with improved GRACE (Gravity Recovery and Climate Experiment, a NASA/DLR, German Space Agency, mission) Earth’s gravity field models will allow a measurement of the Earth’s gravitomagnetic field and of Lense–Thirring effect with an uncertainty of a few percent. After a description of the LARES experiment and of the orbit of LARES, we present an analysis of the main error sources affecting the measurement of gravitomagnetism; these are due to the uncertainties in the Earth’s gravitational field, and in particular to the Earth’s even zonal harmonics, to the time dependent Earth’s gravitational field, and in particular to \dot{J}6 and to the K 1 tide. We also discuss the effect of particle drag and the error due to the uncertainties in the measurement of the orbital inclination. We finally describe some technical and engineering aspects of the LARES mission, and in particular: the laser ranging technique, the cube corner reflectors and the satellite body. We conclude with a brief discussion of LARES separation system and the selected launcher.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ciufolini, I., Theory and Experiments in General Relativity and other Metric Theories. Ph. Dissertation, Univ. of Texas, Austin, Ann Arbor, Michigan (1984).

    Google Scholar 

  2. Ciufolini, I., Measurement of the Lense-Thirring drag on high-altitude laser-ranged artificial satellites. Phys. Rev. Lett., 56, 278–281 (1986).

    Article  ADS  Google Scholar 

  3. Ciufolini, I., A comprehensive introduction to the Lageos gravitomagnetic experiment: from the importance of the gravitomagnetic field in physics to preliminary error analysis and error budget. Int. J. Mod. Phys. A 4, 3083–3145 (1989); see also: [4, 5].

    Article  ADS  Google Scholar 

  4. Tapley, B., Ries, J.C., Eanes, R.J., and Watkins, M.M., NASA-ASI Study on LAGEOS III, CSR-UT publication n. CSR-89-3, Austin, Texas (1989).

    Google Scholar 

  5. Ciufolini, I. et al., ASI-NASA Study on LAGEOS III, CNR, Rome, Italy (1989). See also: I. Ciufolini et al., INFN study on LARES/WEBER-SAT (2004).

    Google Scholar 

  6. Ciufolini, I., Paolozzi, A., Pavlis, E.C. et al., LARES phase A study for ASI (1998).

    Google Scholar 

  7. Ries, J.C., Simulation of an experiment to measure the Lense-Thirring precession using a second LAGEOS satellite. Ph. Dissertation, Univ. of Texas, Austin (1989).

    Google Scholar 

  8. Peterson, G.E., Estimation of the Lense-Thirring precession using laser-ranged satellites. Ph. Dissertation, Univ. of Texas, Austin (1997).

    Google Scholar 

  9. Ciufolini, I. and Wheeler, J.A., Gravitation and Inertia (Princeton University Press, Princeton, New Jersey, 1995).

    Google Scholar 

  10. Ciufolini, I. and Pavlis, E.C., A confirmation of the general relativistic prediction of the Lense-Thirring effect, Nature, 431, 958–960 (2004).

    Article  ADS  Google Scholar 

  11. Reigber, C., Schmidt, R., Flechtner, F., Koenig, R., Meyer, U., Neumayer, K.H., Schwintzer, P. and Zhu, S.Y., An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J. Geodyn., 39, 1–10 (2005). The EIGEN-GRACE02S gravity field coefficients and their calibrated errors are available at: http://op.gfz-potsdam.de/grace/index_GRACE.html

  12. Tapley, B., Ries, J., Bettadpur, S., Chambers, D., Cheng, M., Condi, F., Gunter, B., Kang, Z., Nagel, P., Pastor, R., Pekker, T., Poole, S., and Wang, F., GGM02 An improved Earth gravity field model from GRACE. J. Geod., 79, 467–478 (2005). The GGM02 gravity model is available at: http://www.csr.utexas.edu/grace/gravity/

    Google Scholar 

  13. Reigber, Ch., Flechtner, F., Koenig, R., Meyer, U., Neumayer, K., Schmidt, R., Schwintzer, P. and Zhu, S., GRACE Orbit and Gravity Field Recovery at GFZ Potsdam – First Experiences and Perspectives. Eos. Trans. AGU, 83(47), Fall Meet. Suppl., Abstract G12B-03 (2002).

    Google Scholar 

  14. Tapley, B.D., The GRACE mission: status and performance assessment. Eos. Trans. AGU, 83(47), Fall Meet. Suppl., Abstract G12B-01 (2002).

    Google Scholar 

  15. Watkins, M.M., Yuan, D., Bertiger, W., Kruizinga, G., Romans, L., and Wu, S., 2002. GRACE gravity field results from JPL. Eos. Trans. AGU, 83(47), Fall Meet. Suppl., Abstract G12B-02.

    Article  Google Scholar 

  16. Ciufolini, I., On a new method to measure the gravitomagnetic field using two orbiting satellites. Nuovo Cimento A, 109, 1709–1720 (1996).

    Article  ADS  Google Scholar 

  17. Ciufolini, I., Pavlis, E.C., Chieppa, F., Fernandes-Vieira, E. and Perez-Mercader, J., Test of general relativity and measurement of the Lense-Thirring effect with two Earth satellites. Science, 279, 2100–2103 (1998).

    Article  ADS  Google Scholar 

  18. Ciufolini, I., Chieppa, F., Lucchesi, D. and Vespe, F., Test of Lense-Thirring orbital shift due to spin. Class. Quantum Grav., 14, 2701–2726 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Ciufolini, I., Pavlis, E.C. and Peron, R., Determination of frame-dragging using Earth gravity models from CHAMP and GRACE. New Astron., 11, 527–550 (2006).

    Article  ADS  Google Scholar 

  20. Ries, J.C., Eanes, R.J. and Watkins. M.M., Confirming the frame-dragging effect with satellite laser ranging. 16th International Workshop on Laser Ranging, 13–17 October 2008, Poznan, Poland (2008).

    Google Scholar 

  21. Ciufolini, I, Pavlis, E.C., Ries, J., Koenig, R., Sindoni, G., Paolozzi, A. and Newmayer, H.K., Gravitomagnetism and its measurement with laser ranging to the LAGEOS satellites and GRACE Earth gravity models. in this book: General Relativity and John Archibald Wheeler, eds. Ciufolini, I., and Matzner, R. (Springer Verlag, 2010).

    Chapter  Google Scholar 

  22. Ciufolini, I., Frame-dragging and its measurement. In: Gravitation: from Hubble Length to the Planck Length, Proc. I SIGRAV School on General Relativity and Gravitation, Frascati, Rome, September 2002 (IOP, 2005) pp. 27–69.

    Google Scholar 

  23. Ries, J.C., Eanes, R.J., Tapley, B.D. and Peterson, G.E., Prospects for an improved Lense-Thirring test with SLR and the GRACE gravity mission, in: Toward Millimeter Accuracy Proc. 13th Int. Laser Ranging Workshop, Noomen, R., Klosko, S., Noll, C. and Pearlman, M. eds., (NASA CP 2003212248, NASA Goddard, Greenbelt, MD, (2003).

    Google Scholar 

  24. Pavlis, E.C., Geodetic contributions to gravitational experiments in space. In: Recent Developments in General Relativity, Genoa 2000, R. Cianci, et al., eds. (Springer-Verlag, Milan, 2002) pp. 217–233.

    Chapter  Google Scholar 

  25. Paolozzi, A., Private communication (2004).

    Google Scholar 

  26. Ries, J., Private communication (2005).

    Google Scholar 

  27. Iorio, L., The impact of the new Earth gravity models on the measurement of the Lense-Thirring effect with a new satellite. New Astron., 10, 616–635 (2005).

    Article  ADS  Google Scholar 

  28. ESA (2006): ESA’s Gravity Mission – GOCE Brochure. Available at http://esamultimedia.esa.int/docs/BR209web.pdf

  29. Iorio, L., Will the recently approved LARES mission be able to measure the Lense-Thirring effect at 1 %? Gen. Relativ. Gravit., 41, 1717–1724 (2009) doi: 10.1007/s10714-008-0742-1; see also: arXiv:0803.3278v5 [gr-qc] (2008).

    Article  ADS  MATH  Google Scholar 

  30. Kaula, W.M., Theory of Satellite Geodesy (Blaisdell, Waltham, 1966).

    Google Scholar 

  31. Ciufolini, I., Paolozzi, A. et al. LARES, Laser Relativity Satellite, for the study of the Earth gravitational field and general relativity measurement. Phase A report, studio piccole missioni ASI (1998).

    Google Scholar 

  32. Ciufolini, I., Paolozzi, A., and Peroni I. A Preliminary Study for a Satellite Minimizing Solar Radiation Perturbation. In: Atti XIV Congresso Nazionale AIDAA, 521–530 (1997).

    Google Scholar 

  33. Ciufolini, I., and Paolozzi, A. LARES: A New Laser-ranged satellite for fundamental physics and general relativity. Actual Problems of Aviation and Aerospace Systems, 1, 61–73 (1999).

    Google Scholar 

  34. Ciufolini, I., Paolozzi, A., Peroni, I., and Gabrielli, A. A study for a laser ranged relativity satellite. In: Applied Mechanics in the Americas, Proc. of the PACAM VI, vol. 6, 467–470 (1999).

    Google Scholar 

  35. Cimino, C., Paolozzi, A., and Peroni, I. Thermal Analysis of a Satellite Retroreflector Using MSC/NASTRAN. In: Conferenza Utenti MSC, Roma, Ottobre 1999, pp. 9.1–12 (1999).

    Google Scholar 

  36. Paolozzi, A., A new laser ranged satellite for testing general relativity. In: Ninth Marcel Grossmann Meeting on General Relativity, Roma, Italy, 2–8 July 2000 (World Scientific, 2002) pp. 1766–1770.

    Google Scholar 

  37. Lucchesi, D.M. and Paolozzi, A. A Cost Effective Approach for LARES Satellite. XVI AIDA, Palermo, Sept. 2001, paper 111 (2001) pp. 1–14.

    Google Scholar 

  38. Ciufolini, I., Currie, D.G., and Paolozzi, A. The LARES Mission for Testing the Dynamics of General Relativity. IEEE Aerospace Conference, Montana, USA, March 2003.

    Google Scholar 

  39. Ciufolini, I., Currie, D.G., Paolozzi, A., and Pavlis, E.C. LARES/WEBERSAT, frame-dragging and fundamental physics. In: Proc. Frontier Science 2004, Physics and Astrophysics in Space, Frascati, 14–19 June, 2004 (INFN, Frascati, 2004).

    Google Scholar 

  40. Paolozzi, A., Ciufolini, I., Lucantoni, A., and Arnold, D., Optical Design of LARES Satellitte. XX AIDAA Congress, Milano, Italy, June 29–July 3, 2009.

    Google Scholar 

  41. Luneburg, R.K., Mathematical Theory of Optics (Providence, Rhode Island: Brown University, 1944) pp. 189–213.

    Google Scholar 

  42. Burmistrov, V.B., Parkhomenko, N.N., Roy, Y.A., Shargorodsky, V.D., Vasiliev, V.P., Degnan, J.J., Habib, S., Glotov, V.D., and Sokolov, N.L., Spherical Retroreflector with an Extremely Small Target Error: International Experiment in Space, available at: http://cddis.nasa.gov/lw13/docs/papers/target_vasiliev_1m.pdf

  43. Shargorodsky, V.D., Vasiliev, V.P., Belov, M.S., Gashkin, I.S., and Parkhomenko, N.N., Spherical Glass Target Microsatellite, Institute for Precision Instrument Engineering, Moscow, Russia. Available at: http://cddis.gsfc.nasa.gov/lw15/docs/document/15_TargetSignalsSession.pdf, pp. 21–25.

  44. Paolozzi, A., Ciufolini, I., Vendittozzi, C., and Peroni, I., Mechanical Design of LARES Satellite. XX AIDAA Congress, Milano, Italy, June 29 –July 3 2009.

    Google Scholar 

  45. Paolozzi, A., Ciufolini, I., Onorati, F.M., Acquaroli, L., Scolamiero, L., Sindoni, G., Paris, C., Vendittozzi, C., Ramiconi, M., Preli, N., Lucantoni, A., Passeggio, F., and Berardis, S., Fibre optic sensors for the validation of the numerical simulation on the breadboard of the LARES separation system. In: IAC-08, Glasgow, Scotland, October 2008.

    Google Scholar 

  46. Paolozzi, A., Ciufolini, I., Paris, C., Sindoni, G., Ramiconi, M., Onorati, F.M., and Scolamiero, L., Design of LARES Separation System. XX AIDAA Congress, Milano, Italy, June 29 – July 3, 2009.

    Google Scholar 

  47. Paolozzi, A., Ciufolini, I., Paris, C., Acquaroli, L., Piersigilli, P., and Gabrielli, A., Tests on LARES separation system components using fiber optic sensors. XX AIDAA Congress Milano, Italy, June 29 –July 3, 2009.

    Google Scholar 

  48. NASA technical memorandum NASA TM X-64915 LAGEOS phase B technical report (NASA), Prepared by the Science and Engineering Directorate of Marshall Space Flight Center, Alabama, February 1975. Available at: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19750011251_1975011251.pdf

  49. VEGA User’s Manual, Issue 3/ Revision 0 March 2006, Arianespace, at http://www.arianespace.com/launch-services-vega/VEGAUsersManual.pdf

  50. Ciufolini, I., Paolozzi, A., Pavlis, E.C., Ries, J.C., Koenig, R., Matzner, R.A., Sindoni, G., and Neumayer, H., Towards a one percent measurement of frame-dragging by spin with satellite laser ranging to LAGEOS, LAGEOS 2 and LARES and GRACE gravity models. Space Sci. Rev., 148, 71–104 (2009).

    Article  ADS  Google Scholar 

  51. Ciufolini I., On the orbit of the LARES satellite (2006), arXiv:gr-qc/0609081v1

    Google Scholar 

  52. Paolozzi, A., Ciufolini, I., Lucantoni, A., Arnold, D., Optical design of LARES satellite. XX AIDAA Congress, Milano, Italy, June 29–July 3, 2009.

    Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the support of ASI, the Italian Space Agency, grant I/043/08/0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignazio Ciufolini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ciufolini, I. et al. (2010). The LARES Space Experiment: LARES Orbit, Error Analysis and Satellite Structure. In: Ciufolini, I., Matzner, R. (eds) General Relativity and John Archibald Wheeler. Astrophysics and Space Science Library, vol 367. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3735-0_19

Download citation

Publish with us

Policies and ethics