Advertisement

The Development of Mathematics and the Birth of Phenomenology

  • Mirja HartimoEmail author
Chapter
Part of the Phaenomenologica book series (PHAE, volume 195)

Abstract

The article examines Husserl’s view of mathematics as a continuation of Weierstrass’s project. While Husserl adopts the more modern axiomatic approach to mathematics as opposed to Weierstrass’s genetic approach, he continues to be Weierstrassian in his preoccupation for foundational questions. The latter part of the article examines in what way the outcome is Platonistic in Husserl’s own usage of the term. By Platonism Husserl means both a belief in immutable and unchanging ideal structures, as well as, a search for critical justification in reflection. In the latter sense of the term Husserl’s “Platonism” can be seen as an outcome of Husserl’s Weierstrassian ethos.

Keywords

Logical Investigation Cardinal Number Axiomatic Approach Complete Axiomatization Axiomatic Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Becker, O. 1973. Die Philosophie Edmund Husserls. Anläßlich seines 70. Geburtstag dargestellt. In Husserl, ed. H. Noack, 129–167. Darmstadt: Wissenschaftliche Buchgesellschaft.Google Scholar
  2. Benoist, J. 2003. Husserls „Platonismus“. A talk delivered at the Department of Philosophy, University of Cologne. January 8, 2003.Google Scholar
  3. Cobb-Stevens, R. 1990. Being and Categorial Intuition. Review of Metaphysics 44: 43–66.Google Scholar
  4. Cobb-Stevens, R. 2002. Aristotelian Themes in Husserl’s Logical Investigations. In One Hundred Years of Phenomenology, eds. D. Zahavi and F. Stjernfelt, 2002. Dordrecht: Kluwer.Google Scholar
  5. Cobb-Stevens, R. 2003. The Other Husserl and the Standard Interpretation, Review of The Other Husserl: Horizons of Transcendental Phenomenology by Donn Welton. Research in Phenomenology. Vol 33: 315–327.CrossRefGoogle Scholar
  6. Cobb-Stevens, R. 2004. Aristotelian Nous in Husserl’s Philosophy. In The Impact of Aristotelianism on Modern Philosophy, ed. R. Pozzo, 231–247. Washington: Catholic University of America Press.Google Scholar
  7. Dugac, P. 1973. Eléments d’analyse de Karl Weierstrass. Archive for History of Exact Sciences 10: 42–176.CrossRefGoogle Scholar
  8. Ewald, W. B. 1996. From Kant to Hilbert. A Source Book in the Foundations of Mathematics. Oxford: Clarendon Press.Google Scholar
  9. Hartimo, M. 2006. Mathematical roots of phenomenology: Husserl and the concept of number. Journal of History and Philosophy of Logic Vol. 27(4): 319–337.CrossRefGoogle Scholar
  10. Hartimo, M. 2007. Towards completeness: Husserl on theories of manifolds 1890–1901. Synthese 156: 281–310.CrossRefGoogle Scholar
  11. Hartimo, M. 2008. From Geometry to Phenomenology. Husserl, Hilbert and the Foundations of Geometry. Synthese 162: 225–233.CrossRefGoogle Scholar
  12. Hauser, K. 2003. Lotze and Husserl. Archiv für Geschichte der Philosophie 85: 152–178.CrossRefGoogle Scholar
  13. Heidegger, M. 1985. Prolegomena zur Geschichte des Zeitbegriffs. Frankfurt am Main: Vittorio Klostermann.Google Scholar
  14. Heidegger, M. 2000. Zur Sache des Denkens. Tübingen: Max Niemeyer Verlag.Google Scholar
  15. Husserl, E. 1994. Early Writings in the Philosophy of Logic and Mathematics. Transl. and with an introduction by D. Willard. Dordrecht: Kluwer.Google Scholar
  16. Husserl, E. 2003. Philosophy of Arithmetic. Psychological and Logical Investigations with supplementary texts from 1887–1901. Transl. D. Willard. Kluwer, 2003.Google Scholar
  17. Lotze, H. 1928. Logik, Drei Bücher vom Denken, vom Untersuchen und vom Erkennen. Leipzig: Felix Meiner.Google Scholar
  18. Mittag-Leffler, G. 1897. Weierstrass. Acta Mathematica 21: 79–82.CrossRefGoogle Scholar
  19. Peckhaus, V. 2004. Schröder’s Logic. In Handbook of the History of Logic, eds. D. M. Gabbay and J. Woods, Volume 3, 557–609. Amsterdam: Elsevier North Holland.Google Scholar
  20. Schuhmann, K. 1977. Husserl-Chronik. The Hague: Martinus Nijhoff.Google Scholar
  21. Taminiaux, J. 1985. Dialectic and difference: finitude in modern thought. In eds. J. Decker and R. Crease, Atlantic Highlands. New Jersey: Humanities Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.PhilosophyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations