Advertisement

How Can a Phenomenologist Have a Philosophy of Mathematics?

  • Jaakko Hintikka
Chapter
  • 776 Downloads
Part of the Phaenomenologica book series (PHAE, volume 195)

Abstract

Husserl’s philosophy of mathematics is interpreted as dealing with forms not unlike Aristotle’s forms. They can be somehow immediately present in one’s consciousness. Husserl’s ideas are compared for similarities and dissimilarities with those of Aristotle, Mach, Russell and Wittgenstein. Husserl’s main development is seen as making these forms more and more robust conceptually. It parallels the overall development of mathematics in the last 200 years from a study of numbers and space into a study of different structures. This development culminates in Husserl’s unfinished project of a theory of all theories. This project has closer connections with Hilbert’s axiomatic theorizing than with the ideas of the intuitionists.

Keywords

Simple Object Axiom System Phenomenological Theory Axiomatic Theory Minimal Sense 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Hill, C. O. 2000a. Husserl’s Mannigfaltigkeitslehre. In Husserl or Frege? eds. C. O. Hill and G. E. R. Haddock, 161–178. Chicago: Open Court.Google Scholar
  2. Hill, C. O. 2000b. Husserl and Hilbert on Completeness. In Husserl or Frege? eds. C. O. Hill and G. E. R. Haddock, 179–198. Chicago: Open Court.Google Scholar
  3. Hintikka, J. 1969. On Kant’s Notion of Intuition (Anschauung). In The First Critique, eds. T. Perelhum and J. J. Macintosh, 38–53. Belmont, CA: Wadsworth.Google Scholar
  4. Hintikka, J. 1990. Wittgenstein and the Problem of Phenomenology. In Language, Knowledge and Intentionality, eds. L. Haaparanta et al., 15–46. Acta Philosophica Fennica 49.Google Scholar
  5. Hintikka, J. 1995. The Phenomenological Dimension. In The Cambridge Companion to Husserl, eds. B. Smith and D. W. Smith, 78–109. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  6. Hintikka, J. 2003. The Notion of Information in Husserl. Revue Internationale de Philosophie 224: 169–191.Google Scholar
  7. Hintikka, J. 2004a. Les phénoménologues ou les aventuriers de la forme perdue. eds.P. Ricoeur, M. Revault d’Allonnes and F. Azouvi, 111–119. Paris: Éditions de l’Herne, 2004.Transl. Patrick DiMascio et al. (Original title: Phenomenologists—raiders of the lost forms.).Google Scholar
  8. Hintikka, J. 2004b. Aristotle’s Theory of Thinking and Its Consequences for His Methodology. In Analyses of Aristotle, ed. J. Hintikka, 45–75. Dordrecht: Kluwer Academic.Google Scholar
  9. Kusch, M. 1989. Language as Calculus vs. Language as Universal Medium. Dordrecht: Kluwer Academic.Google Scholar
  10. Mach, E. 1905. Erkenntnis and Irrtum. Leipzig: Verlag von Johann Ambrosius Barth.Google Scholar
  11. Park, B. -C. 1998. Phenomenological Aspects of Wittgenstein’s Philosophy. Dordrecht: Kluwer Academic.Google Scholar
  12. Sommer, M. 1985. Husserl und die frühe Positvismus. Frankfurt am Main: Vittori Klostermann.CrossRefGoogle Scholar
  13. van Heijenoort, J. 1967. Logic as Language and Language as Calculus. Synthese 17: 324–330.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jaakko Hintikka
    • 1
  1. 1.Boston UniversityBostonUSA

Personalised recommendations