Intuition In Mathematics: On The Function Of Eidetic Variation In Mathematical Proofs

  • Dieter Lohmar
Chapter
Part of the Phaenomenologica book series (PHAE, volume 195)

Abstract

Intuition is of central importance for the phenomenological access as a whole and it also turns out to be decisive in the analysis of cognition in mathematics. But sensibility can not be the source of intuition in abstract formal sciences. Therefore I first delineate some basic traits of cognition in terms of Husserl’s categorial intuition. Then I investigate in a special case of cognition, i.e., the eidetic method of Husserl, the so-called Wesensschau. This intuition of essences is a special case of categorial intuition and it is characterized by apodictic evidence. Thus it may solve the question of intuitivity together with the problem of necessary validity. My way to argue for this thesis is to analyze some intuitive steps in simple proofs and point out some rules that enable an implicit variation. Following the traces of the eidetic method in mathematical intuition it turns out that not only in material mathematics like in geometry, but also in formal mathematics, there is a special kind of implicit eidetic variation that serves as the source of intuitivity in proofs.

Keywords

Mathematical Proof Formal Context Complete Induction Husserlian Phenomenology Equal Circle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Berkeley, G. 1901. A Treatise Concerning the Principles of Human Knowledge. In The Works of George Berkeley, ed. A. C. Fraser, Vol. 1. Oxford: Clarendon Press.Google Scholar
  2. Hume, D. 1888. A Treatise of Human Nature, ed. L. A. Selby-Bigge. Oxford: Clarendon Press.Google Scholar
  3. Landau, E. 1930. Grundlagen der Analysis. Leipzig: Akademische Verlagsgesellschaft.Google Scholar
  4. Lohmar, D. 1989. Phänomenologie der Mathematik. Elemente einer phänomenologischen Aufklärung der mathematischen Erkenntnis nach Husserl. Dordrecht: Kluwer.Google Scholar
  5. Lohmar, D. 1993. On the relation of mathematical objects to time. Are mathematical objects timeless, overtemporal or ommnitemporal? Journal of Indian Council of Philosophical Research X: 73–87.Google Scholar
  6. Lohmar, D. 2000. Edmund Husserls Formale und transzendentale Logik. Darmstadt: Werkinterpretation.Google Scholar
  7. Lohmar, D. 2002. Husserl’s Concept of Categorial Intuition. In Hundred Years of Phenomenology, eds. D. Zahavi, and F. Stjernfelt, 125–145. Dordrecht: Springer.Google Scholar
  8. Lohmar, D. 2003. Einleitung. In Phänomenologische Psychologie, ed. E. Husserl, IX–XLI. Hamburg: Felix Meiner.Google Scholar
  9. Lohmar, D. 2006. How are Formal Sciences possible? The New Yearbook for Phenomenology VI: 109–126.Google Scholar
  10. Picker, B. 1961. Die Bedeutung der Mathematik für die Philosophie Edmund Husserls. Philosophia Naturalis 7: 266–355.Google Scholar
  11. Seebohm, T. 1990. Kategoriale Anschauung. Phänomenologische Forschungen 23: 14 f.Google Scholar
  12. Ströker, E. 1978. Husserls Evidenzprinzip. Sinn und Grenzen einer methodischen Norm der Phänomenologie als Wissenschaft. Zeitschrift für Philosophische Forschung 32: 3–30.Google Scholar
  13. Tieszen, R. 2005. Free Variation and the Intuition of Geometric Essences: Some Reflections on Phenomenology and Modern Geometry. Philosophy and Phenomenological Research Vol. LXX(No.1): 153–173.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Dieter Lohmar
    • 1
  1. 1.University of CologneCologneGermany

Personalised recommendations