Advertisement

Husserl on Axiomatization and Arithmetic

  • Claire Ortiz Hill
Chapter
Part of the Phaenomenologica book series (PHAE, volume 195)

Abstract

Material from Husserl’s logic courses is used to piece together a picture of his theory of axiomatization and arithmetic that can be used to lay the groundwork for the study of its ramifications and implications for philosophy of logic and mathematics. It is argued that this shows that Husserl’s theory is close to Hilbert’s and belies claims of kinship with Brouwerian Intuitionism understood as the view that the collection of natural numbers and all of pure mathematics develops out of the self-unfolding of “the fundamental intellectual phenomenon of the falling apart of a moment of life into qualitatively different things, of which one is experienced as giving way to the other and yet is retained by an act of memory.” It is contended that it needs to be determined whether Husserl’s theory is a genuine, viable alternative to other, better known theories.

Keywords

Deductive System Axiom System Cardinal Number Complete Manifold Transcendental Phenomenology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Brouwer, L. E. J. [1912] 1983. Intuitionism and Formalism. In Philosophy of Mathematics, Selected Readings, eds. P. Benacerraf and H. Putnam, 77–89. Cambridge: Cambridge University Press.Google Scholar
  2. Brouwer, L. E. J. [1921] 1998. Intuitionist Set Theory. In From Brouwer to Hilbert, the Debate on the Foundations of Mathematics in the 1920s, ed. P. Mancosu, 23–27. New York: Oxford University Press.Google Scholar
  3. Brouwer, L. E. J. [1928a] 1967. On the Significance of the Principle of Excluded Middle in Mathematics, Especially in Function Theory. In From Frege to Gödel, ed. J. van Heijenoort, 335–345. Cambridge MA: Harvard University Press.Google Scholar
  4. Brouwer, L. E. J. [1928b] 1998. Intuitionist Reflections on Formalism. In From Brouwer to Hilbert, the Debate on the Foundations of Mathematics in the 1920s, ed. P. Mancosu, 40–44. New York: Oxford University Press. Also in From Frege to Gödel, ed. van Heijenoort, 490–492. Cambridge MA: Harvard University Press.Google Scholar
  5. Brouwer, L. E. J. [1929] 1998. Mathematics, Science, and Language. In From Brouwer to Hilbert, the Debate on the Foundations of Mathematics in the 1920s, ed. P. Mancosu, 45–53. New York: Oxford University Press.Google Scholar
  6. Brouwer, L. E. J. [1930] 1998. The Structure of the Continuum. In From Brouwer to Hilbert, the Debate on the Foundations of Mathematics in the 1920s, ed. P. Mancosu, 54–63. New York: Oxford University Press.Google Scholar
  7. Brouwer, L. E. J. [1948] 1983. Consciousness, Philosophy, and Mathematics. In Philosophy of Mathematics, Selected Readings, eds. P. Benacerraf and H. Putnam, 90–96. Cambridge: Cambridge University Press.Google Scholar
  8. Brouwer, L. E. J. [1952] 1996. Historical Background, Principles, and Methods of Intuition. In From Kant to Hilbert: A Source Book in the Foundations of Mathematics, ed. W. Ewald, 1197–1207. Oxford: Clarendon Press.Google Scholar
  9. da Silva, J. 2000a. Husserl’s Two Notions of Completeness, Husserl and Hilbert on Completeness and Imaginary Elements in Mathematics. Synthese 125: 417–438.CrossRefGoogle Scholar
  10. da Silva, J. 2000b. The Many Senses of Completeness. Manuscrito, 23(2): 41–60.Google Scholar
  11. da Silva, J. 2005. Husserl on the Principle of the Excluded Middle. In Husserl and the Logic of Experience, ed. G. Banham, 51–81. London and New York: Palgrave Macmillan.Google Scholar
  12. Frege, G. [1879] 1967. Begriffsschrift, a formula language, modeled upon that of arithmetic, for pure thought. In From Frege to Gödel, A Source Book in Mathematical Logic, 1879–1931 , ed. J. van Heijenoort, 1–82. Cambridge MA: Harvard University Press.Google Scholar
  13. Føllesdal, D. [1958] 1994. Husserl and Frege: A Contribution to Elucidating the Origins of Phenomenological Philosophy. In Mind, Meaning and Mathematics. Essays on the Philosophical Views of Husserl and Frege, ed. L. Haaparanta. Dordrecht, Kluwer.Google Scholar
  14. Føllesdal, D. 1969. Husserl’s Notion of Noema. Journal of Philosophy 66: 680–687.CrossRefGoogle Scholar
  15. Hilbert, D. [1900] 1996. Über den Zahlbegriff. Jahresbericht der Deutschen Mathematiker Vereinigung 8: 180–184. Translated as On the Concept of Number, in From Kant to Hilbert. A Sourcebook in the Foundations of Mathematics, ed. W. Ewald 1089–1095. Oxford: Clarendon Press.Google Scholar
  16. Hilbert, D. [1930] 1996. Logic and the Knowledge of Nature. In From Kant to Hilbert. A Sourcebook in the Foundations of Mathematics, ed. W. Ewald, 1157–1165. Oxford: Clarendon Press.Google Scholar
  17. Hilbert, D. [1931] 1998. The Grounding of Elementary Number Theory. In From Brouwer to Hilbert, the Debate on the Foundations of Mathematics in the 1920s, ed. P. Mancosu, 266–267. New York: Oxford University Press. Also in From Kant to Hilbert. A Sourcebook in the Foundations of Mathematics, ed. W. Ewald, 1148–1156. Oxford: Clarendon Press.Google Scholar
  18. Hill, C. O. 1979. La logique des expressions intentionnelles. Université de Paris-Sorbonne: Mémoire de Maîtrise.Google Scholar
  19. Hill, C. O. 1991. Word and Object in Husserl, Frege and Russell, the Roots of Twentieth Century Philosophy. Athens OH: Ohio University Press.Google Scholar
  20. Hill, C. O. 1995. Husserl and Hilbert on Completeness. In From Dedekind to Gödel, Essays on the Development of the Foundations of Mathematics, ed.J. Hintikka, pp. 143–163. Dordrecht: Kluwer.Google Scholar
  21. Hill, C. O. 1997. Rethinking Identity and Metaphysics, On the Foundations of Analytic Philosophy. New Haven: Yale University Press.Google Scholar
  22. Hill, C. O. 2002a. On Husserl’s Mathematical Apprenticeship and Philosophy of Mathematics. In Phenomenology World Wide, ed. A. -T. Tymieniecka, 76–92. Dordrecht: Kluwer.Google Scholar
  23. Hill, C. O. 2002b. Tackling Three of Frege’s Problems: Edmund Husserl on Sets and Manifolds. Axiomathes 13: 79–104.CrossRefGoogle Scholar
  24. Hill, C. O. and Rosado Haddock., G. E. 2000. Husserl or Frege? Meaning, Objectivity, and Mathematics. La Salle: Open Court.Google Scholar
  25. Hintikka, J. 1997. Hilbert Vindicated. Synthese 110(1): 15–36.CrossRefGoogle Scholar
  26. Hintikka, J. 2008. Hilbert was an Axiomatist, not a Formalist. In Approaching Truth: Essays in Honor of Ilkka Niiniluoto, eds. S. Pihlström, et al., 33–48. Newcastle upon Tyne: College Publications.Google Scholar
  27. Husserl, E. 1887. On the Concept of Number. In PA: 305–357.Google Scholar
  28. Husserl, E. [1896] 2001. Logik, Vorlesung 1896. Dordrecht: Kluwer.Google Scholar
  29. Husserl, E. 1901a. Essay III, Double Lecture: On the Transition through the Impossible (‘Imaginary’) and the Completeness of an Axiom System, in PA: 409–473.Google Scholar
  30. Husserl, E.1901b. Essay IV, The Domain of an Axiom System/Axiom System—Operation System, in PA: 475–492.Google Scholar
  31. Husserl, E. [1905] 1994. Husserl an Brentano, 27. III. 1905. Briefwechsel, Die Brentanoschule I. Dordrecht: Kluwer.Google Scholar
  32. Husserl, E. [1908/09] 2003. Alte und neue Logik, Vorlesung 1908/09, ed. E. Schuhmann. Dordrecht: Kluwer.Google Scholar
  33. Husserl, E. 1975. Introduction to the Logical Investigations, A Draft of a Preface to the Logical Investigations , eds. E. Fink, P. Bossert and C. Peters. The Hague: Martinus Nijhoff.Google Scholar
  34. Husserl, E. 1994. Early Writings in the Philosophy of Logic and Mathematics, trans. D. Willard. Dordrecht: Kluwer.Google Scholar
  35. Husserl, E. [1902/03a] 2001a. Allgemeine Erkenntnistheorie, Vorlesung 1902/03, ed. E. Schuhmann. Dordrecht: Kluwer, 2001.Google Scholar
  36. Husserl, E. [1902/03b] 2001b. Logik, Vorlesung 1902/03, ed. E. Schuhmann, 2001. Dordrecht: Kluwer.Google Scholar
  37. Mohanty, J. N. 1974. Husserl and Frege: a New Look at their Relationship. Research in Phenomenology 4: 51–62.CrossRefGoogle Scholar
  38. Mohanty, J. N. 1982. Husserl and Frege. Bloomington IN: Indiana University Press.Google Scholar
  39. Quine, W. [1953] 1961. Two Dogmas of Empiricism. In From a Logical Point of View (2nd rev.), 20–46. New York: Harper & Row.Google Scholar
  40. Rosado Haddock, G. 1973. Edmund Husserls Philosophie der Logik und Mathematik im Lichte der gegenwärtigen Logik und Grundlagenforschung. Bonn: Dissertation, Rheinische Friedrich-Wilhelms-Universität.Google Scholar
  41. Rosado Haddock, G. 1982. Remarks on Sense and Reference in Frege and Husserl. Kant-Studien 73(4): 425–439.Google Scholar
  42. Schuhmann, E. and Schuhmann, K. 2001. Husserl Manuskripte zu seinem Göttinger Doppelvortrag von 1901. Husserl Studies 17: 87–123.CrossRefGoogle Scholar
  43. Tieszen, R. 1989. Mathematical Intuition, Phenomenology and Mathematical Knowledge. Dordrecht: Kluwer.Google Scholar
  44. van Atten, M. 2007. Brouwer Meets Husserl. On the Phenomenology of Choice Sequences. Dordrecht: Springer.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Claire Ortiz Hill
    • 1
  1. 1.University of CaliforniaOaklandUSA

Personalised recommendations