Phenomenology and Mathematics pp 23-46 | Cite as

# Platonism, Phenomenology, And Interderivability

Chapter

First Online:

- 4 Citations
- 744 Downloads

## Abstract

In this paper I try to offer a definitive answer to the question of the relation of Husserl’s phenomenology to mathematical Platonism and constructivism of the Brouwerian sort. The controversial issue of Frege’s presumed influence on Husserl is also considered and it is briefly argued against such an influence. In the second part of the paper Husserl’s semantics of sense and objectuality (or referent) is discussed, and it is shown that it is much more adequate for mathematics than Frege’s semantics. Finally, a possible theory of degrees of extensionality is briefly sketched.

## Keywords

Compact Hausdorff Space Conceptual Content Mathematical Fact Transcendental Phenomenology Unify Field Theory
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

- Benacerraf, P. [1973] 1983. Mathematical Truth. In
*Philosophy of Mathematics*. 2nd ed, eds. P. Benacerraf and H. Putnam, 403–420. Cambridge: Cambridge University Press.Google Scholar - Beth, E. W. 1965.
*The Foundations of Mathematics*. Amsterdam: North Holland.Google Scholar - Carnap, R. 1928.
*Der Logische Aufbau der Welt*. 4th ed, Hamburg: Felix Meiner.Google Scholar - Chateaubriand, O. 2001 & 2005.
*Logical Forms*(2 vols). Campinas: CLE.Google Scholar - Church, A. 1956.
*Introduction to Mathematical Logic*. Princeton: Princeton University Press.Google Scholar - Frege, G. 1879.
*Begriffsschrift*. Reprint Hildesheim: Georg Olms.Google Scholar - Frege, G. 1884.
*Die Grundlagen der Arithmetik*. Centenarausgabe. Hamburg: Felix Meiner.Google Scholar - Frege, G. [1891] 1990. Funktion und Begriff. In
*Kleine Schriften*, 125–142. Hildesheim: Georg Olms.Google Scholar - Frege, G. [1892] 1990. Über Sinn und Bedeutung. In
*Kleine Schriften*, 143–162. Hildesheim: Georg Olms.Google Scholar - Frege, G. [1893 & 1903] 1962.
*Grundgesetze der Arithmetik*(2 vols.). Reprint Hildesheim: Georg Olms.Google Scholar - Frege, G. [1918] 1990. Der Gedanke. In
*Kleine Schriften*, 342–362. Hildesheim: Georg Olms.Google Scholar - Frege, G. [1969] 1983.
*Nachgelassene Schriften*. 2nd ed, Hamburg: Felix Meiner.Google Scholar - Frege, G. 1974.
*Wissenschaftlicher Briefwechsel*. Hamburg: Felix Meiner.Google Scholar - Frege, G. 1990.
*Kleine Schriften*. 2nd edition, Hildesheim: Georg Olms.Google Scholar - Greimann, D. (ed.). 2007.
*Essays on Frege’s Conception of Truth*. Amsterdam: Rodopi.Google Scholar - Gödel, K. 1995.
*Collected Works III*. Oxford: Oxford University Press.Google Scholar - Mohanty, J. N. 1974. Husserl and Frege: a New Look at their Relationship.
*Research in Phenomenology*4, 51–62.CrossRefGoogle Scholar - Rosado Haddock, G. E. 1973.
*Edmund Husserls Philosophie der Logik und Mathematik im Lichte der gegenwärtigen Logik und Grundlagenforschung*(Diss.) Bonn.Google Scholar - Rosado Haddock, G. E. 1996. On the Semantics of Mathematical Statements.
*Manuscrito*11(1): 149–175.Google Scholar - Rosado Haddock, G. E. 1997. Review of Barry Smith and David Woodruff Smith (eds.).
*The Cambridge Companion to Husserl. Modern Logic*7(3–4): 380–395.Google Scholar - Rosado Haddock, G. E. 2000a. Remarks on Sense and Reference in Frege and Husserl. In
*Husserl or Frege*, eds. C. O. Hill and G. E. Rosado Haddock, 23–41. Chicago and La Salle, Illinois: Open Court.Google Scholar - Rosado Haddock, G. E. 2000b. On Frege’s Two Notions of Sense. In
*Husserl or Frege*, eds. C. O. Hill and G. E. Rosado Haddock, 53–66. Chicago and La Salle, Illinois: Open Court.Google Scholar - Rosado Haddock, G. E. 2000c. To Be a Fregean or To Be a Husserlian: That is the Question for Platonists. In
*Husserl or Frege*, eds. C. O. Hill and G. E. Rosado Haddock, 199–220. Chicago and La Salle, Illinois: Open Court.Google Scholar - Rosado Haddock, G. E. 2000d. Husserl’s Epistemology of Mathematics and the Foundation of Platonism in Mathematics. In
*Husserl or Frege*, eds. C. O. Hill and G. E. Rosado Haddock, 221–240. Chicago and La Salle, Illinois: Open Court.Google Scholar - Rosado Haddock, G. E. 2000e. Interderivability of Seemingly Unrelated Mathematical Statements and the Philosophy of Mathematics. In
*Husserl or Frege*, eds. C. O. Hill and G. E. Rosado Haddock, 241–252. Chicago and La Salle, Illinois: Open Court.Google Scholar - Rosado Haddock, G. E. 2000f. On Husserl’s Distinction Between State of Affairs (
*Sachverhalt*) and Situation of Affairs (*Sachlage*). In*Husserl or Frege*, eds. C. O. Hill and G. E. Rosado Haddock, 253–262. Chicago and La Salle, Illinois: Open Court.Google Scholar - Rosado Haddock, G. E. 2000 g. On Anti-Platonism and Its Dogmas. In
*Husserl or Frege*, eds. C. O. Hill and G. E. Rosado Haddock, 263–290. Chicago and La Salle, Illinois: Open Court.Google Scholar - Rosado Haddock, G. E. 2003. Review of Anastasio Alemán,
*Lógica, Matemáticas y Realidad*.*Philosophia Mathematica**11*(1): 108–120.Google Scholar - Rosado Haddock, G. E. 2006. A Critical Introduction to Frege’s Philosophy. Aldershot: Ashgate.Google Scholar
- Rosado Haddock, G. E. 2008.
*The Young Carnap’s Unknown Master*. Aldershot: Ashgate.Google Scholar - Hill, C. O. and Rosado Haddock, G. E. 2000.
*Husserl or Frege?: Meaning, Objectivity and Mathematics*. Chicago & La Salle: Open Court.Google Scholar - Husserl., E. [1939] 1976.
*Erfahrung und Urteil*. 5th edition, Hamburg: Felix Meiner.Google Scholar - Mancosu, P. and Ryckman, T. A. 2002. Mathematics and Phenomenology: the Correspondence between O. Becker and H.
*Weyl, Philosophia Mathematica*10(2): 130–202.Google Scholar - Ryckman, T. A. 2005.
*The Reign of Relativity*. Oxford: Oxford University Press.CrossRefGoogle Scholar - Schuhmann, K. (ed.) 1977.
*Husserl-Chronik*. Den Haag: Martinus Nijhooff.Google Scholar - Tappenden, J. 2006. The Riemannian Background to Frege’s Philosophy. In
*The Architecture of Modern Mathematics*, eds. J. Ferreirós and J. J. Gray, 97–132. Oxford: Oxford University Press.Google Scholar - Tarski, A. [1956] 1983.
*Logic, Semantics, Metamathematics*. Bloomington: Hackett.Google Scholar - Tarski, A. [1969] 1986. Truth and Proof. In
*Collected Papers IV*, 399–423. Basel & Boston: Birkhäuser.Google Scholar - Tieszen, R. 1989. Mathematical Intuition: Phenomenology and Mathematical Knowledge. Dordrecht: Kluwer.Google Scholar
- van Atten, M. 2002. Why Husserl Should Have Been a Strong Revisionist in Mathematics.
*Husserl Studies*18, 1–18.CrossRefGoogle Scholar - van Atten, M. 2003. Review of Claire O. Hill and Guillermo E. Rosado Haddock,
*Husserl or Frege?: Meaning, Objectivity and Mathematics*.*Philosophia Mathematica**11*(3): 241–244.Google Scholar - van Atten, M., van Dalen, D. and Tieszen, R. 2002. The Phenomenology and Mathematics of the Continuum.
*Philosophia Mathematica*10(2): 203–226.Google Scholar

## Copyright information

© Springer Science+Business Media B.V. 2010