Advertisement

Platonism, Phenomenology, And Interderivability

  • Guillermo E. Rosado Haddock
Chapter
Part of the Phaenomenologica book series (PHAE, volume 195)

Abstract

In this paper I try to offer a definitive answer to the question of the relation of Husserl’s phenomenology to mathematical Platonism and constructivism of the Brouwerian sort. The controversial issue of Frege’s presumed influence on Husserl is also considered and it is briefly argued against such an influence. In the second part of the paper Husserl’s semantics of sense and objectuality (or referent) is discussed, and it is shown that it is much more adequate for mathematics than Frege’s semantics. Finally, a possible theory of degrees of extensionality is briefly sketched.

Keywords

Compact Hausdorff Space Conceptual Content Mathematical Fact Transcendental Phenomenology Unify Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Benacerraf, P. [1973] 1983. Mathematical Truth. In Philosophy of Mathematics. 2nd ed, eds. P. Benacerraf and H. Putnam, 403–420. Cambridge: Cambridge University Press.Google Scholar
  2. Beth, E. W. 1965. The Foundations of Mathematics. Amsterdam: North Holland.Google Scholar
  3. Carnap, R. 1928. Der Logische Aufbau der Welt. 4th ed, Hamburg: Felix Meiner.Google Scholar
  4. Chateaubriand, O. 2001 & 2005. Logical Forms (2 vols). Campinas: CLE.Google Scholar
  5. Church, A. 1956. Introduction to Mathematical Logic. Princeton: Princeton University Press.Google Scholar
  6. Frege, G. 1879. Begriffsschrift. Reprint Hildesheim: Georg Olms.Google Scholar
  7. Frege, G. 1884. Die Grundlagen der Arithmetik. Centenarausgabe. Hamburg: Felix Meiner.Google Scholar
  8. Frege, G. [1891] 1990. Funktion und Begriff. In Kleine Schriften, 125–142. Hildesheim: Georg Olms.Google Scholar
  9. Frege, G. [1892] 1990. Über Sinn und Bedeutung. In Kleine Schriften, 143–162. Hildesheim: Georg Olms.Google Scholar
  10. Frege, G. [1893 & 1903] 1962. Grundgesetze der Arithmetik (2 vols.). Reprint Hildesheim: Georg Olms.Google Scholar
  11. Frege, G. [1918] 1990. Der Gedanke. In Kleine Schriften, 342–362. Hildesheim: Georg Olms.Google Scholar
  12. Frege, G. [1969] 1983. Nachgelassene Schriften. 2nd ed, Hamburg: Felix Meiner.Google Scholar
  13. Frege, G. 1974. Wissenschaftlicher Briefwechsel. Hamburg: Felix Meiner.Google Scholar
  14. Frege, G. 1990. Kleine Schriften. 2nd edition, Hildesheim: Georg Olms.Google Scholar
  15. Greimann, D. (ed.). 2007. Essays on Frege’s Conception of Truth. Amsterdam: Rodopi.Google Scholar
  16. Gödel, K. 1995. Collected Works III. Oxford: Oxford University Press.Google Scholar
  17. Mohanty, J. N. 1974. Husserl and Frege: a New Look at their Relationship. Research in Phenomenology 4, 51–62.CrossRefGoogle Scholar
  18. Rosado Haddock, G. E. 1973. Edmund Husserls Philosophie der Logik und Mathematik im Lichte der gegenwärtigen Logik und Grundlagenforschung (Diss.) Bonn.Google Scholar
  19. Rosado Haddock, G. E. 1996. On the Semantics of Mathematical Statements. Manuscrito 11(1): 149–175.Google Scholar
  20. Rosado Haddock, G. E. 1997. Review of Barry Smith and David Woodruff Smith (eds.). The Cambridge Companion to Husserl. Modern Logic 7(3–4): 380–395.Google Scholar
  21. Rosado Haddock, G. E. 2000a. Remarks on Sense and Reference in Frege and Husserl. In Husserl or Frege, eds. C. O. Hill and G. E. Rosado Haddock, 23–41. Chicago and La Salle, Illinois: Open Court.Google Scholar
  22. Rosado Haddock, G. E. 2000b. On Frege’s Two Notions of Sense. In Husserl or Frege, eds. C. O. Hill and G. E. Rosado Haddock, 53–66. Chicago and La Salle, Illinois: Open Court.Google Scholar
  23. Rosado Haddock, G. E. 2000c. To Be a Fregean or To Be a Husserlian: That is the Question for Platonists. In Husserl or Frege, eds. C. O. Hill and G. E. Rosado Haddock, 199–220. Chicago and La Salle, Illinois: Open Court.Google Scholar
  24. Rosado Haddock, G. E. 2000d. Husserl’s Epistemology of Mathematics and the Foundation of Platonism in Mathematics. In Husserl or Frege, eds. C. O. Hill and G. E. Rosado Haddock, 221–240. Chicago and La Salle, Illinois: Open Court.Google Scholar
  25. Rosado Haddock, G. E. 2000e. Interderivability of Seemingly Unrelated Mathematical Statements and the Philosophy of Mathematics. In Husserl or Frege, eds. C. O. Hill and G. E. Rosado Haddock, 241–252. Chicago and La Salle, Illinois: Open Court.Google Scholar
  26. Rosado Haddock, G. E. 2000f. On Husserl’s Distinction Between State of Affairs (Sachverhalt) and Situation of Affairs (Sachlage). In Husserl or Frege, eds. C. O. Hill and G. E. Rosado Haddock, 253–262. Chicago and La Salle, Illinois: Open Court.Google Scholar
  27. Rosado Haddock, G. E. 2000 g. On Anti-Platonism and Its Dogmas. In Husserl or Frege, eds. C. O. Hill and G. E. Rosado Haddock, 263–290. Chicago and La Salle, Illinois: Open Court.Google Scholar
  28. Rosado Haddock, G. E. 2003. Review of Anastasio Alemán, Lógica, Matemáticas y Realidad. Philosophia Mathematica 11(1): 108–120.Google Scholar
  29. Rosado Haddock, G. E. 2006. A Critical Introduction to Frege’s Philosophy. Aldershot: Ashgate.Google Scholar
  30. Rosado Haddock, G. E. 2008. The Young Carnap’s Unknown Master. Aldershot: Ashgate.Google Scholar
  31. Hill, C. O. and Rosado Haddock, G. E. 2000. Husserl or Frege?: Meaning, Objectivity and Mathematics. Chicago & La Salle: Open Court.Google Scholar
  32. Husserl., E. [1939] 1976. Erfahrung und Urteil. 5th edition, Hamburg: Felix Meiner.Google Scholar
  33. Mancosu, P. and Ryckman, T. A. 2002. Mathematics and Phenomenology: the Correspondence between O. Becker and H. Weyl, Philosophia Mathematica 10(2): 130–202.Google Scholar
  34. Ryckman, T. A. 2005. The Reign of Relativity. Oxford: Oxford University Press.CrossRefGoogle Scholar
  35. Schuhmann, K. (ed.) 1977. Husserl-Chronik. Den Haag: Martinus Nijhooff.Google Scholar
  36. Tappenden, J. 2006. The Riemannian Background to Frege’s Philosophy. In The Architecture of Modern Mathematics, eds. J. Ferreirós and J. J. Gray, 97–132. Oxford: Oxford University Press.Google Scholar
  37. Tarski, A. [1956] 1983. Logic, Semantics, Metamathematics. Bloomington: Hackett.Google Scholar
  38. Tarski, A. [1969] 1986. Truth and Proof. In Collected Papers IV, 399–423. Basel & Boston: Birkhäuser.Google Scholar
  39. Tieszen, R. 1989. Mathematical Intuition: Phenomenology and Mathematical Knowledge. Dordrecht: Kluwer.Google Scholar
  40. van Atten, M. 2002. Why Husserl Should Have Been a Strong Revisionist in Mathematics. Husserl Studies 18, 1–18.CrossRefGoogle Scholar
  41. van Atten, M. 2003. Review of Claire O. Hill and Guillermo E. Rosado Haddock, Husserl or Frege?: Meaning, Objectivity and Mathematics. Philosophia Mathematica 11(3): 241–244.Google Scholar
  42. van Atten, M., van Dalen, D. and Tieszen, R. 2002. The Phenomenology and Mathematics of the Continuum. Philosophia Mathematica 10(2): 203–226.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Guillermo E. Rosado Haddock
    • 1
  1. 1.University of Puerto RicoSan JuanPuerto Rico

Personalised recommendations