Microfluidic Packaging Process

Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

A CMOS-based LoC system would require efficient microfluidic packaging to protect the circuitry from the biological and chemical analytes, as well as the external environment. Microfluidic packaging is also critical to direct the fluids towards the embedded sensors or actuators for analysis. Ideally, these microfluidic packaging components, including micro-channels, -chambers, -fittings, -valves and -pumps should be performed using a low temperature process with reliable hermetic bonding [278]. The leakage of analytes (especially of charged molecules, as is the case with many bioanalytes) from microfluidic components may increase the parasitic capacitances or resistances and thus affect the circuit characteristics.

Keywords

Microfluidic Channel Sacrificial Layer Rapid Prototype Technique Microfluidic Structure Polymeric Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 76.
    Y. Chao, Y. Huang, B.L. Hassler, R.M. Worden, A.J. Mason, Amperometric electrochemical microsystem for a miniaturized protein biosensor array. IEEE Trans. Biomed. Circuits Syst. 3(3), 160-168 (2009)CrossRefGoogle Scholar
  2. 96.
    K. Fife, A. El-Gamal, H.S.P. Wong, A multi-aperture image sensor with 0.7 μm pixels in 0.11 μm CMOS technology. IEEE J. Solid State Circuits 43(12), 2990-3005 (2008)Google Scholar
  3. 140.
    E. Ghafar-Zadeh, M. Sawan, D. Therriault, CMOS-based capacitive sensor lab-on-chip: a multidisciplinary approach. Analog Integr. Circuits Signal Process. 59(1) (2009)Google Scholar
  4. 206.
    E. Ghafar-Zadeh, M. Sawan, D. Therriault, A 0.18-μm CMOS capacitive sensor Lab-on-Chip. Sens. Actuat. A: Phys. 141(2) (2008)Google Scholar
  5. 278.
    M.A. Miled, M. Sawam, E. Ghafar-Zadeh, A dynamics decoder for first-order sigma-delta modulators dedicated to lab-on-chip applications. IEEE Trans. Signal Process. 57(10), 4076-4084 (2009)CrossRefGoogle Scholar
  6. 279.
    S. Hardt, F. Schönfeld, Microfluidic Technologies for Miniaturized Analysis Systems (Springer, New York, 2007)CrossRefGoogle Scholar
  7. 280.
    M. Agirregabiria, F.J. Blanco, J. Berganzo, M.T. Arroyo, A. Fullaondo, K. Mayora, J.M. Ruano-López, Fabrication of SU-8 multilayer microstructures based on successive CMOS compatible adhesive bonding and releasing steps. Lab Chip 5, 545-552 (2005)CrossRefGoogle Scholar
  8. 281.
    N.H. Tea, V. Milanovic, C.A. Zincke, J.S. Suehle, M. Gaitan, M.E. Zaghloul, J. Geist, Hybrid postprocessing etching for CMOS-compatible MEMS. J. Microelectromechan. Syst. 6(4), 363-372 (1997)CrossRefGoogle Scholar
  9. 282.
    P. Zheng-chun, L. Zhong-geng, M. Tondra, L. Chang-geng, M. Zhang, K. Lian, J. Goettert, J. Hormes, CMOS compatible integration of three-dimensional microfluidic systems based on low-temperature transfer of SU-8 films. J. Microelectromech. Syst. 15(3) (2006)Google Scholar
  10. 283.
    F.J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M.T. Arroyo, J.M. Ruano, I. Aramburu, Kepa Mayora, Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding. Micromech. Microeng. 14 (2004)Google Scholar
  11. 284.
    G. Kaltsas, D.N. Pagonis, A.G. Nassiopoulou, Planar CMOS compatible process for the fabrication of buried microchannels in silicon, using porous-silicon technology. J. Microelectromech. Syst. 12(6), 863-872 (2003)CrossRefGoogle Scholar
  12. 285.
    A. Rasmussen, M.E. Zaghloul, CMOS microfluidic fabrication technology for biomedicalapplications. 42nd Midwest Symposium on Circuits and Systems 2, 791-794 (1999)Google Scholar
  13. 286.
    E. Ghafar-Zadeh, M. Sawan, D. Therriault, A New approach for the integration of microfluidic structures to microelectronic devices. 4th Canadian Workshop on CMC Microsystems MEMSGoogle Scholar
  14. 287.
    P.F. Man, D.K. Jones, C.H. Mastrangelo, Microfluidic plastic capillaries on silicon substrates: a new inexpensive technology for bioanalysis chips. IEEE Micro Electro Mechanical Systems (MEMS), 1997Google Scholar
  15. 288.
    M.A. Burns, B.N. Johnson, S.N. Brahmasandra, K. Handique, J.R. Webster, M. Krishnan, T.S. Sammarco, P.M. Man, D. Jones, D. Heldsinger, C.H. Mastrangelo, D.T. Burke. An integrated nanoliter DNA analysis device. Science 282(5388), 484-487 (16 October 1998)Google Scholar
  16. 289.
    A. Rasmussen, M. Gaitan, L.E. Locascio, M.E. Zaghloul, Fabrication techniques to realize CMOS-compatible microfluidicmicrochannels. J. Microelectromech. Syst. 10(2) (2001)Google Scholar
  17. 290.
    A. Rasmussen, Implementation and modeling of microfluidic components realized using CMOS technology. Angela, D.Sc., George Washington University, 2002Google Scholar
  18. 291.
    H. Lee, D. Ham, R.M. Westervelt, CMOS/microfluidic hybrid systems. Chapter III in CMOS Biotechnology (Springer, 2008)Google Scholar
  19. 292.
    H. Lee, Y. Liu, R.M. Westervelt, D. Ham, IC/microfluidic hybrid system for magnetic manipulation of biological cells. IEEE J. Solid State Circuits 41(6) (2006)Google Scholar
  20. 293.
    I. Chartier, C. Bory, A. Fuchs, D. Freida, N. Manaresi, M. Ruty, J. Bablet, L. Fulbert, Fabrication of hybrid plastic-silicon micro-fluidic devices for invidual cell manipulation by dielectrophoresis. Proc. SPIE 5345 (2004)Google Scholar
  21. 294.
    P. Sethu, C.H. Mastrangelo, Cast epoxy-based microfluidic systems and their application in biotechnology. Sens. Actuat. B: Chem. 98(2), 337-346 (2004)CrossRefGoogle Scholar
  22. 295.
    P. Sethu, C.H. Mastrangelo, Polyethylene glycol (PEG)-based actuator for nozzle-diffuser pumps in plastic microfluidic systems. Sens. Actuat. A: Phys. 104(3), 283-289 (2003)CrossRefGoogle Scholar
  23. 296.
    P. Vulto, N. Glade, L. Altomare, J. Bablet, L. Tin, G. Del-Medoro, I. Chartier, N. Manaresi, M. Tartagni, R. Guerrieri, Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips. J. Lab chip 5 (2005)Google Scholar
  24. 297.
    J.H. Song, M.J. Edirisinghe, J.R.G. Evans, Formulation and multilayer jet printing of ceramic inks. J. Am. Ceram. Soc. 82(12) (1999)Google Scholar
  25. 298.
    S.L. Morissette, J.A. Lewis, P.G. Clem, J. Cesarano, D.B. Dimos, Direct-write fabrication of Pb(Nb,Zr,Ti)O3 devices: influence of paste rheology on print morphology and component properties, J. Am. Ceram. Soc. 84(11) (2001)Google Scholar
  26. 299.
    K.A.M. Seerden, N. Reis, J.R.G. Evans, P.S. Grant, J.W. Halloran, B. Derby, Ink-jet printing of wax-based alumina suspensions. J. Am. Ceram. Soc. 84(11) (2001)Google Scholar
  27. 300.
    J.A. Lewis, Direct-write assembly of ceramics from colloidal inks, Current. Opin. Solid State Mater. Sci. 6(3) (2002)Google Scholar
  28. 301.
    M. Xu, G.M. Gratson, E.B. Duoss, R.F. Shepherd, J.A. Lewis, Biomimetic silicification of 3D polyamine-rich scaffolds assembled by direct ink writing. Soft Matter 16(9) (2006)Google Scholar
  29. 302.
    G.M. Gratson, F. Garcia-Santamaria, V. Lousse, M. Xu, S. Fan, J.A. Lewis, P.V. Braun, Direct-write assembly of three-dimensional photonic crystals: conversion of polymer scaffolds to silicon hollow-woodpile structures. Adv. Mater. 18(4) (2006)Google Scholar
  30. 303.
    J.L. Simon, S. Michna, J.A. Lewis, E.D. Rekow, V.P. Thompson, J.E. Smay, A. Yampolsky, J.R. Parsons, J.L. Ricci, In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. J. Biomed. Mater. Res. A 26(28) (2007)Google Scholar
  31. 304.
    J.G. Dellinger, J. Cesarano 3rd, RD Jamison Robotic deposition of model hydroxyapatite scaffolds with multiple architectures and multiscale porosity for bone tissue engineering. J. Biomed. Mater. Res. A 82(2) (2007)Google Scholar
  32. 305.
    D. Therriault, S.R. White, J.A. Lewis, Chaotic mixing in three-dimensional microvascular networks. Nat. Mater. 2(4) (2003)Google Scholar
  33. 306.
    E. Ghafar-Zadeh, M. Sawan, D. Therriault, A microfluidic packaging technique for lab-on-chip applications. EEE Techol. Adv. Pack. 32(2) (2009)Google Scholar
  34. 307.
    M. Hajj-Hassan, T. Gonzalez, E. Ghafar-Zadeh, H. Djeghelian, V. Chodavarapu, M. Andrews, D. Therriault, Direct-dispense polymeric waveguides platform for optical chemical sensors. Sensors 8(12) (2008)Google Scholar
  35. 308.
    M. Kuhn, T. Napporn, M. Meunier, S. Vengallatore, D. Therriault, Direct-write microfabrication of single-chamber micro solid oxide fuel cells. J. Micromech. Microeng. 18(1) (2008)Google Scholar
  36. 309.
    M. Kuhn, T. Napporn, M. Meunier, D. Therriault, S. Vengallatore, Direct-write microfabrication of single-chamber solid oxide fuel cells with interdigitated electrodes. Mater. Res. Soc. Symp. Proc. 972 (2007)Google Scholar
  37. 310.
    M. Kuhn, T. Napporn, M. Meunier, D. Therriault, S. Vengallatore, Fabrication and testing of coplanar single-chamber micro solid oxide fuel cells with geometrically complex electrodes. J. Power Source. 177(1) (2008)Google Scholar
  38. 311.
    T. Hibino, H. Iwahara, Simplification of solid oxide fuel cell systems using partial oxidation of methane. Chem. Lett. 7 (1993)Google Scholar
  39. 312.
    M. Nagao, M. Yano, K. Okamoto, A. Tomita, Y. Uchiyama, N. Uchiyama, T. Hibino, A single-chamber sofc stack: energy recovery from engine exhaust. Fuel Cell. 8(5) (2008)Google Scholar
  40. 313.
    Z. Shao, S.M. Haile, J. Ahn, P.D. Ronney, Z. Zhan, S.A. Barnett, A thermally self-sustained micro solid-oxide fuel-cell stack with high power density. Nature 435(7043) (2005)Google Scholar
  41. 314.
    B. Morel, R. Roberge, S. Savoie, T. W. Napporn, M. Meunier, An experimental evaluation of the temperature gradient in solid oxide fuel cells. Electrochem. Solid State Lett. 10(2) (2007)Google Scholar
  42. 315.
    D. Therriault, R.F. Shepherd, S.R. White, J.A. Lewis, Fugitive inks for direct-write assembly of 3-D microvascular networks. Adv. Mater. 17(4)Google Scholar
  43. 316.
    B.R. Flachsbart, K. Wong, J.M. Iannacone, E.N. Abante, R.L. Vlach, P.A. Rauchfuss, P.W. Bohn, J.V. Sweedler, M.A. Shannon, Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing. Lab Chip 6, 667-674 (2006)CrossRefGoogle Scholar
  44. 317.
    X.B. Chen, W.J. Zhang, G. Schoenau, B. Surgenor, Off-line control of time-pressure dispensing processes for electronics packaging. IEEE Trans. Electron. Pack. Manuf. 26(4) (2003)Google Scholar
  45. 318.
    X.B. Chen, H. Ke, Effects of fluid properties on dispensing processes for electronics packaging. IEEE Trans. Electron. Pack. Manuf. 29(2) (2006)Google Scholar
  46. 320.
    E. Ghafar-Zadeh, M. Sawan, D. Therriault, Direct-write fabrication of microchannel in epoxy resin. ASME Mechanical Engineering Congress and Exposition(IMECE), Orlando, FL, 2005Google Scholar
  47. 321.
    H. Becker, C. Gärtner, Polymer microfabrication technologies for microfluidic systems. Anal. Bioanal. Chem. 39(1) (2008)Google Scholar
  48. 322.
    R.H. Liu, Q. Yu, D.J. Beebe, Fabrication and characterization of hydrogel-based microvalves. J. Microelectromech. Syst. 11(1) (2002)Google Scholar
  49. 323.
    T. Miyata, N. Asami, T. Uragami, A reversibly antigen-responsive hydrogel. Nature 399(766) (1999)Google Scholar
  50. 324.
    Liang Dong, Hongrui Jiang, Autonomous microfluidics with stimuli-responsive hydrogels. Soft Matter. 3(10) (2007)Google Scholar
  51. 325.
    J. Wang, Z. Chen, M. Mauk, K. Sheng Hong, M. Li, S. Yang, H.H. Baul, Self-actuated, thermo-responsive hydrogel valves for labon a chip. Biomed. Device. 7(4) (2005)Google Scholar
  52. 326.
    E. Ghafar-Zadeh, M. Sawan, V. Chodavarapu, A direct-write microfluidic fabrication process for CMOS-based Lab-on-Chip applications. Microelectron. Eng. 86(10) (2009)Google Scholar
  53. 327.
    M.L. Berre, G. Pandraud, P. Morfouli, M. Lallemand, The performance of micro heat pipes measured by integrated sensors. J. Micromech. Microeng. 16 (2006)Google Scholar
  54. 328.
    R. Bey-Oueslati, S. Martel, D. Therriaul, Micro heat pipe fabrication: high performance deposition platform for electronic industry. International Workshop on Microfactories, 2006Google Scholar
  55. 329.
    P. de la Fuentea, J.A. Etxeberriaa, J. Berganzob, J.M. Ruano-Lópezb, M.T. Arroyob, E. Castañoa, F.J. Graciaa, End-fire coupling of a SU-8 waveguide to a silicon mesa photodiode: Integrability in an optical analysis microsystem. Sens. Actuat. A: Phys. 123-124, 313-318 (2005)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Electrical EngineeringEcole Polytechnique de MontréalMontrealCanada

Personalised recommendations