Skip to main content

Capacitive Interface Circuits for LoC Applications

  • Chapter
  • First Online:

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

The design criteria of capacitive interface circuits for LoC applications differs from conventional MEMS based applications such as acceleration, vibration or pressure [238]. As already mentioned in Chapter 2, a movable sensing electrode should be implemented through MEMS procedures and then bonded to an interface circuit for measurement purposes, but the surface electrodes can be directly realized atop integrated circuit chip fabricated through standard CMOS technology [240]. The emphasis of this chapter is placed on describing the difference between a MEMS based capacitive sensor (MBCS), a Lab-on-Chip based capacitive sensor (LBCS) and on introducing various circuit design techniques for LBCSs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P. Maoa, J. Han, Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding. Lab Chip 5, 837-844 (2005)

    Article  Google Scholar 

  2. B.R. Flachsbart, K. Wong, J.M. Iannacone, E.N. Abante, R.L. Vlach, P.A. Rauchfuss, P.W. Bohn, J.V. Sweedlerbc, M.A. Shannon, Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing. Lab Chip 6, 667-674 (2006)

    Article  Google Scholar 

  3. Micronit Microfluidics Inc., http://www.micronit.com/

  4. Harvard Apparatus. http://www.harvardapparatus.com

  5. A. Hassibi, T.H. Lee, A Programmable 0.18-$muhbox{m}$ CMOS electrochemical sensor microarray for biomolecular detection. IEEE J. Sens. 6(6), 1380-1388 (2006)

    Google Scholar 

  6. E. Ghafar-Zadeh, M. Sawan, A hybrid microfluidic/CMOS capacitive sensor dedicated to lab-on-chip applications. IEEE Trans. Biomed. Circuits Syst. 1(4) (2007)

    Google Scholar 

  7. C. Stagni, C. Guiducci, L. Benini, B. Ricco, S. Carrara, C. Paulus, M. Schienle, R. Thewes, A fully electronic label-free DNA sensor chip. IEEE J. Sens. 7(4) (2007)

    Google Scholar 

  8. C. Hagleitner, D. Lange, A. Hierlemann, O. Brand, H. Baltes, CMOS single-chip gas detection system comprising capacitive, calorimetric and mass-sensitive microsensors. IEEE J. Solid State Circuits, 37(12) (2002)

    Google Scholar 

  9. A. Romani, N. Manaresi, L. Marzocchi, G. Medoro, A. Leonardi, L. Altomare, M. Tartagni, R. Guerrieri, Capacitive sensor array for localization of bioparticles in CMOS lab-on-a-chip. Digest of Technical Papers, IEEE ISSCC Conference, 2004, pp. 224-225

    Google Scholar 

  10. S.B. Prakash, P. Abshire, M. Urdaneta, E. Smela, A CMOS capacitance sensor for cell adhesion characterization 2005. IEEE International Symposium on Circuits and Systems (ISCAS), May 2005

    Google Scholar 

  11. E. Ghafer-Zadeh, M. Sawan, A. Shabani, M. Zourob, V. Chodavarapu, Bacteria growth monitoring through a CMOS based capacitive sensor. 14th IEEE International Mixed-Signal, Sensors, and Systems Test Workshop (IMS3TW), Vancouver, 2008

    Google Scholar 

  12. S. Carrara, V. Bhalla, C. Stagni, L. Benini, A. Ferretti, F. Valle, A. Gallotta, B. Riccò, B. Samorì, Label-free cancer markers detection by capacitance biochip. Sens. Actuator. B: Chem. 136(1), 163-172 (2009)

    Article  Google Scholar 

  13. C. Guiducci, C. Stagni, G. Zuccheri, A. Bogliolo, L. Benini a, B. Samor`ı b, B. Riccò, DNA detection by integrable electronics. Biosens. Bioelectron. 19, 781-787 (2004)

    Google Scholar 

  14. C. Stagni, C. Guiducci, L. Benini, B. Ricco, S. Carrara, C. Paulus, M. Schienle, R. Thewes, A fully electronic label-free DNA sensor chip. IEEE Sens. J. 7(4), 577-585 (2007)

    Article  Google Scholar 

  15. EE. Ghafar-Zadeh, M. Sawan, V.P. Chodavarapu, Bacteria growth monitoring through differential CMOS capacitive sensor, TBCAS, Submitted 2009

    Google Scholar 

  16. M. Zourob, S. Elwary, A. Turner, Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems (Springer, New York, 2007)

    Google Scholar 

  17. E. Ghafar-Zadeh, M. Sawan, A core-CBCM sigma delta capacitive sensor array dedicated to lab-on-chip applications. Sens. Actuat. A: Phys. 144(2) (2008)

    Google Scholar 

  18. Jonathan M. Cooper, Anthony E.G. Cass, Biosensors (Oxford University Press, Oxford, 2003)

    Google Scholar 

  19. A. Ulman, Formation and structure of self-assembled monolayers. Chem. Rev. 96(4), 1533-1554 (1996)

    Article  Google Scholar 

  20. J.H. Fendler, Chemical self-assembly for electronic applications. Chem. Mat. 13(2), 3196-3210 (2001)

    Article  Google Scholar 

  21. E. Ghafar-Zadeh, M. Sawan, A CMOS-Based capacitive censor for laboratory-on-chips: design and experimental results. IEEE International Symposium on Circuits and Systems (ISCAS), New Orleans, 2007

    Google Scholar 

  22. N. Yazdi, H. Kulah, K. Najafi, Precision readout circuits for capacitive microaccelerometer. IEEE Proc. Sens. 1, 28-31 (2004)

    Article  Google Scholar 

  23. F.N. Toth, G.C.M. Meijer, A low-cost, smart capacitive position sensor. IEEE Trans. Instrum. Meas. 41(6), 1041-1044 (1992)

    Article  Google Scholar 

  24. B. Rodgers, S. Goenawan, M. Yunus, Y. Kaneko, J. Yoshiike, 16-μA interface circuit for a capacitive flow sensor. IEEE J. Solid State Circuits 33(12), 2121-2133 (1998)

    Article  Google Scholar 

  25. M. Yamada, T. Takebayashi, S. Notoyama, K. Watanabe, A switched-capacitor interface for capacitive pressure sensors. IEEE Trans. Instrum. Meas. 41(1), 81-86 (1992)

    Article  Google Scholar 

  26. S. Xiaojing, H. Matsumoto, K. Murao, A high-accuracy digital readout technique for humidity sensor. IEEE Trans. Instrumen. Meas. 50(5), 1277-1282 (2001)

    Article  Google Scholar 

  27. M. Suster, G. Jun, N. Chaimanonart, W.H. Ko, D.J. Young, A high-performance MEMS capacitive strain sensing system. IEEE J. Microelectromech. Syst. 15(5), 1069-1077

    Google Scholar 

  28. Capacitive fluid level sensor Paul Wells, US 5042299, 23 July 1990

    Google Scholar 

  29. W. Jiangfeng, G.K. Fedder, L.R. Carley, A low-noise low-offset capacitive sensing amplifier for a 50-μg/√Hz monolithic CMOS MEMS accelerometer. IEEE J. Solid State Circuits 39(5), 722-730 (2004)

    Article  Google Scholar 

  30. J.A. Geen, S.J. Sherman, J.F. Chang, S.R. Lewis, Single-chip surface micromachined integrated gyroscope with 50°/h Allan deviation. IEEE J. Solid State Circuits 37(12), 1860-1866 (2002)

    Article  Google Scholar 

  31. M. Tartagni, R. Guerrieri, A fingerprint sensor based on the feedback capacitive sensing scheme. IEEE J. Solid State Circuits 33(1), 133-142 (1998)

    Article  Google Scholar 

  32. N. Manaresi, R. Rambaldi, M. Tartagni, Z.M.K. Vajna, R. Guerrieri, A CMOS-only micro touch pointer. IEEE J. Solid State Circuits 34(12), 1860-1868 (1999)

    Article  Google Scholar 

  33. D. Sylvester, J.C. Chen, H. Chenming, Investigation of interconnect capacitance characterization using charge-based capacitance measurement (CBCM) technique and three-dimensional simulation. IEEE J. Solid State Circuits 33(3), 449-453 (1998)

    Article  Google Scholar 

  34. D. Sylvester, W. Chenming, Analytical modeling and characterization of deep-submicrometer interconnect. Proc. IEEE 89(5), 634-664 (2001)

    Article  Google Scholar 

  35. C. Yao-Wen, C. Hsing-Wen, H. Chung-Hsuan, L. Han-Chao, L. Tao-Cheng, T. Wenchi, J. Ku, L. Chih-Yuan, A novel simple CBCM method free from charge injection-induced errors. IEEE Electron Device Lett. 25(5), 262-264 (2004)

    Article  Google Scholar 

  36. C. Yao-Wen, C. Hsing-Wen, H. Chung-Hsuan, L. Han-Chao, L. Tao-Cheng, T. Wenchi, J. Ku, L. Chih-Yuan, Interconnect capacitance characterization using charge-injection-induced error-free (CIEF) charge-based capacitance measurement (CBCM). IEEE Trans. Semicond. Manuf. 19(1), 50-56 (2006)

    Article  Google Scholar 

  37. R. Bach, B. Davis, R. Laubhan, Improvements to CBCM (charge-based capacitance measurement) for deep submicron CMOS technology. 7th International Symposium on Quality Electronic Design (ISQED ‘06), San Jose, CA, March 2006

    Google Scholar 

  38. Z. Hui, K. Raseong, A. Paul, M. Luisier, G. Klimeck, M. Fa-Jun, S.C. Rustagi, G.S. Samudra, N. Singh, L. Guo-Qiang, K. Dim-Lee, Characterization and modeling of subfemtofarad nanowire capacitance using the CBCM technique. IEEE Electron Device Lett. 30(5), 526-528 (2009)

    Article  Google Scholar 

  39. C. Yao-Wen, C. Hsing-Wen, L. Tao-Cheng, K. Ya-Chin, T. Wenchi, K.Y.H. Joseph, L. Chih-Yuan, Charge-based capacitance measurement for bias-dependent capacitance. IEEE Electron Device Lett. 27(5), 390-392 (2006)

    Article  Google Scholar 

  40. B. Sell, A. Avellan, W.H. Krautschneider, Charge-based capacitance measurements (CBCM) on MOS devices. IEEE Trans. Device Mat. Reliab. 2(1), 9-12 (2002)

    Article  Google Scholar 

  41. C. Guiducci, C. Stagni, G. Zuccheri, A. Bogliolo, L. Benini, B. Samori, B. Ricco, A biosensor for direct detection of DNA sequences based on capacitance measurements. 32nd European Solid-State Device Research Conference, 2002

    Google Scholar 

  42. S.B. Prakash, P. Abshire, A fully differential rail-to-rail CMOS capacitance sensor with floating-gate trimming for mismatch compensation. IEEE Trans. Circuits Syst. I: Regular Papers 56(5), 975-986 (2009)

    Article  Google Scholar 

  43. E. Ghafer-Zadeh, M. Sawan, Toward fully integrated CMOS based capacitive sensor lab-on-chip. IEEE International Workshop on Medical Measurements and Applications (MeMeA), Ottawa, 2008

    Google Scholar 

  44. E. Ghafar-Zadeh, M. Sawan, CMOS based capacitive detection lab-on-chip: design and experimental results. IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, 2007

    Google Scholar 

  45. E. Ghafer-Zadeh, M. Sawan, A hybrid IC/microfluidic sensor for lab-on-chips. 4th Canadian Workshop on MEMS and Microfluidic, Montreal, 2007

    Google Scholar 

  46. E. Ghafar-Zadeh, M. Sawan, A highly linear capacitive sensor circuit based on a novel CBCM method. 3th International IEEE Northeast Workshop on Circuits and Systems (NEWCAS), Quebec City, 2005

    Google Scholar 

  47. E. Ghafar-Zadeh, M. Sawan, A high accuracy differential capacitive circuit for bioparticles sensing applications. IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Montreal

    Google Scholar 

  48. I. Evans, T. York, Microelectronic capacitance transducer for particle detection. IEEE Sens. J. 4(3), 364-372 (2004)

    Article  Google Scholar 

  49. T.A. York, G. Evansa, Z. Pokusevski, T. Dyakowskib, Particle detection using an integrated capacitance sensor. Sens. Actuators A: Phys. 92(1), 74-81 (2001)

    Article  Google Scholar 

  50. E. Ghafar-Zadeh, M. Sawan, Charge based capacitive sensor array for CMOS based laboratory-on-chip applications. 5th IEEE Conference on Sensors, Oct 2007, pp. 378-381

    Google Scholar 

  51. E. Ghafar-Zadeh, M. Sawan, D. Therriault, Microelectrofluidic packaging for CMOS based laboratory-on-chips. International Electronics Packaging Symposium, Niskayuna, 2006

    Google Scholar 

  52. S.R. Norsworthy, R. Schreier, G.C. Temes. Delta-sigma data converters: theory, design, and simulation. IEEE Press

    Google Scholar 

  53. M. Yin, F.O. Eynde, W. Sansen, A high-speed CMOS comparator with 8-b resolution. IEEE J. Solid State Circuits 27(2) (1992)

    Google Scholar 

  54. S. Hein, K. Ibraham, A. Zakhor, New properties of sigma-delta modulators with DC inputs. IEEE Trans. Commun. 40(8) (1992)

    Google Scholar 

  55. L.G. McIlrath, A robust O (N log n) algorithm for optimal decoding of first-order Σ-Δ sequences. IEEE Trans. Signal Process. 50(8) (2002)

    Google Scholar 

  56. F. Dachselt, M. Gotz, Rational cycle decoding algorithm for the first-order delta-sigma modulator. IEEE International Symposium on Circuits and Systems (ISCAS), May 2001

    Google Scholar 

  57. F. Dachselt and S. Quitz, Structure and information content in sequence from the single-loop sigma-delta modulator with dc inpu. IEEE International Symposium on Circuits and Systems ISCAS, 4, 685-688 (May 2004)

    Google Scholar 

  58. M.A. Miled, E. Ghafar-Zadeh, M. Sawan, Fast decoding algorithm for first order DC-input sigma-delta modulators. 50th Midwest Symposium on Circuits and Systems (MWSCAS), 2007

    Google Scholar 

  59. M.A. Miled, M. Sawam, E. Ghafar-Zadeh, A dynamics decoder for first-order sigma-delta modulators dedicated to lab-on-chip applications. IEEE Trans. Signal Process. 57(10), 4076-4084 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Ghafar-Zadeh .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ghafar-Zadeh, E., Sawan, M. (2010). Capacitive Interface Circuits for LoC Applications. In: CMOS Capacitive Sensors for Lab-on-Chip Applications. Analog Circuits and Signal Processing. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3727-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3727-5_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3726-8

  • Online ISBN: 978-90-481-3727-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics