Capacitive Bio-interfaces

  • Ebrahim Ghafar-Zadeh
  • Mohamad Sawan
Part of the Analog Circuits and Signal Processing book series (ACSP)


In Chapter 2, we discussed the design and implementation of sensing electrodes atop CMOS chip. The sensing electrodes are incorporated with biological substances for sensing purposes as shown in Fig. 3.1.


Gold Electrode Passivation Layer Continuous Glucose Monitoring Glucose Sensor Parasitic Capacitance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 64.
    A. Hassibi, T.H. Lee, A Programmable 018-μ CMOS electrochemical sensor microarray for biomolecular detection. IEEE J. Sens. 6(6), 1380-1388 (2006)CrossRefGoogle Scholar
  2. 70.
    A. Balasubramanian, B. Bhuva, R. Mernaugh, F.R. Haselton, Si-based sensor for virus detection. IEEE J. Sens. 5(3), 340-344 (2005)CrossRefGoogle Scholar
  3. 72.
    C. Stagni, C. Guiducci, L. Benini, B. Ricco, S. Carrara, C. Paulus, M. Schienle, R. Thewes, A fully electronic label-free DNA sensor chip. IEEE J. Sens. 7(4) (2007)Google Scholar
  4. 73.
    C. Hagleitner, D. Lange, A. Hierlemann, O. Brand, H. Baltes, CMOS single-chip gas detection system comprising capacitive, calorimetric and mass-sensitive microsensors. IEEE J. Solid State Circuits, 37(12) (2002)Google Scholar
  5. 74.
    A. Romani, N. Manaresi, L. Marzocchi, G. Medoro, A. Leonardi, L. Altomare, M. Tartagni, R. Guerrieri, Capacitive sensor array for localization of bioparticles in CMOS lab-on-a-chip. Digest of Technical Papers, IEEE ISSCC Conference, 2004, pp. 224-225Google Scholar
  6. 75.
    S.B. Prakash, P. Abshire, On-chip capacitance sensing for cell monitoring applications. IEEE J. Sens. 7(3) (2007)Google Scholar
  7. 90.
    Y. Maruyama, K. Sawada, H. Takao, M. Ishida, A novel filterless fluorescence detection sensor for DNA analysis. IEEE Trans. Electron Devices 53(3), 553-558 (2006)CrossRefGoogle Scholar
  8. 168.
    M.I. Prodromidis, Impedimetric immunosensors-A review. Electrochimica Acta In PressGoogle Scholar
  9. 169.
    J.G. Guan, Y.Q. Miao, Q.J. Zhang, Impedimetric biosensors. J. Biosci. Bioeng. 97(4), 219-226 (2004)Google Scholar
  10. 170.
    A. Vermeulen, F. Devlieghere, K. Bernaerts, J. Van Impe, J. Debevere, Growth/no growth models describing the influence of pH, lactic and acetic acid on lactic acid bacteria developed to determine the stability of acidified sauces. Int. J. Food Microbiol. 119(3), 258-269 (2007)CrossRefGoogle Scholar
  11. 171.
    M. Barbaro, A. Bonfiglio, L. Raffo, A. Alessandrini, P. Facci, I. Barák, Fully electronic DNA hybridization detection by a standard CMOS biochip. Sens. Actuator. B: Chem. 118(1), 41-46 (2006)CrossRefGoogle Scholar
  12. 172.
    V. Nanduri, S. Balasubramanian, S. Sista, V.J. Vodyanoy, A.L. Simonian, Highly sensitive phage-based biosensor for the detection of β-galactosidase. Analytica Chimica Acta 589(2), 166-172 (2007)CrossRefGoogle Scholar
  13. 173.
    S. Carrara, V. Bhalla, C. Stagni, L. Benini, A. Ferretti, F. Valle, A. Gallotta, B. Riccò, B. Samorì, Label-free cancer markers detection by capacitance biochip. Sens. Actuator. B: Chem. 136(1), 163-172 (2009)CrossRefGoogle Scholar
  14. 174.
    L. Yao, M. Hajj-Hassan, E. Ghafar-Zadeh, A. Shabani, V. Chodavarapu, M. Zourob, CMOS capacitive sensor system for bacteria detection using phage organisms. IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Niagara Falls, 2008Google Scholar
  15. 175.
    V.M. Mirsky, M. Riepl, O.S. Wolfbeis, Capacitive monitoring of protein immobilization and antigen-antibody reactions on monomolecular alkylthiol films on gold electrodes. Biosens. Bioelectron. 12(9), 977-989 (1997)CrossRefGoogle Scholar
  16. 176.
    Z. Cheng, E. Wang, X. Yang, Capacitive detection of glucose using molecularly imprinted polymers. Biosens. Bioelectron. 16(3), 179-185 (2001)CrossRefGoogle Scholar
  17. 177.
    G.J. Yang, J.L. Huang, W.J. Meng, M. Shen, X.A. Jiao, A reusable capacitive immunosensor for detection of Salmonella spp based on grafted ethylene diamine and self-assembled gold nanoparticle monolayers. Anal. Chim. Acta 647(2), 159-166 (2009)CrossRefGoogle Scholar
  18. 178.
    E. Spiller, A. Schöll, R. Alexy, K. Kümmerer, G.A. Urban, A sensitive microsystem as biosensor for cell growth monitoring and antibiotic testing. Sens. Actuator. A: Phys. 130-131, 312-321 (2006)CrossRefGoogle Scholar
  19. 179.
    L. Yang, Y. Li, Detection of viable Salmonella using microelectrode-based capacitance measurement coupled with immunomagnetic separation. J. Microbiol. Meth. 64, 9-16 (2006)CrossRefGoogle Scholar
  20. 180.
    E. Ghafar-Zadeh, M. Sawan, Toward fully integrated CMOS based capacitive sensor for lab-on-chip applications. International Workshop on Medical Measurements and Applications (MeMeA) 2008. IEEE, May 2008, pp. 77-80Google Scholar
  21. 181.
    E. Ghafar-Zadeh, M. Sawan, Towards fully integrated Lab-on-Chip: design, assembly and experimental results. Int. J. Adv. Media Commun. 3(1), 154-166 (2009)CrossRefGoogle Scholar
  22. 182.
    U.A. Nuber, DNA Microarrays (Tylor & Francis, Berlin/Germany, 2005)Google Scholar
  23. 183.
    H. Mohamed, L.D. McCurdy, D.H. Szarowski, S. Duva, J.N. Turner, M. Caggana, Development of a rare cell fractionation device: application for cancer detection. IEEE Trans. NanoBiosci. 3(4), 251-256 (2004)CrossRefGoogle Scholar
  24. 184.
    S. Nagrath, L.V. Sequist, S. Maheswaran, D.W. Bell, D. Irimia, L. Ulkus, M.R. Smith, E.L. Kwak, S. Digumarthy, A Muzikansky, P. Ryan, U.J. Balis, R.G. Tompkins, D.A. Haber, M. Toner, Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450 (2007)Google Scholar
  25. 185.
    E.P. Anderson, A CMOS label-free DNA microarray based on charge sensing. Ph.D., Stanford University, 2008Google Scholar
  26. 186.
    S. Parikh, A CMOS imager for DNA detection. M.A.Sc., University of Toronto, 2007Google Scholar
  27. 187.
    X. Chen, L. Jiong, W. Yijin, C. Lu, L. Zuhong, M. Chan. A CMOS-compatible DNA microarray using optical detection together with a highly sensitive nanometallic particle protocol. IEEE Electron Device Lett. 26(4), 240-242 (2005)CrossRefGoogle Scholar
  28. 188.
    T.D. Huang, S. Sorgenfrei, P. Gong, R. Levicky, K.L. Shepard, A 018-μm CMOS array sensor for integrated time-resolved fluorescence detection. IEEE J. Solid State Circuit 44(5), 1644-1654 (2009)CrossRefGoogle Scholar
  29. 189.
    G. Sigalov, J. Comer, G. Timp, A. Aksimentiev, Detection of DNA sequences using an alternating electric field in a nanopore capacitor. Nano Lett. 8(1), 56-63 (2008)CrossRefGoogle Scholar
  30. 190.
    M. Barbaro, A. Bonfiglio, L. Raffo, A. Alessandrini, P. Facci, I. BarakBarak. A CMOS, fully integrated sensor for electronic detection of DNA hybridization. IEEE Electron Device Lett. 27(7), (2006)Google Scholar
  31. 191.
    C. Berggren, P. StaÊlhandske, J. Brundell, G. Johansson, A feasibility study of a capacitive biosensor for direct detection of DNA hybridization. Electroanalysis 11(3) (1999)Google Scholar
  32. 192.
    C. Guiducci, C. Stagni, G. Zuccheri, A. Bogliolo, L. Beninia, B. Samorıb, B. Riccò, DNA detection by integrable electronics. Biosens. Bioelectron. 19, 781-787 (2004)CrossRefGoogle Scholar
  33. 193.
    C. Stagni, C. Guiducci, L. Benini, B. Ricco, S. Carrara, C. Paulus, M. Schienle, R. Thewes, A fully electronic label-free DNA sensor chip. IEEE Sens. J. 7(4), 577-585 (2007)CrossRefGoogle Scholar
  34. 194.
    J.P. Cloareca, J.R. Martina, C. Polychronakosc, I. Lawrenceb, M.F. Lawrenceb, E. Souteyrand, Functionalization of Si/SiO2 substrates with homooligonucleotides for a DNA biosensor. Sens. Actuator B: Chem. 58(1), 394-398 (1999)CrossRefGoogle Scholar
  35. 195.
    M.L. Yarmush, M. Toner, R. Plonsey, J.D. Bronzino, Biotechnology for Biomedical Engineers (CRC, Raton, London, New York, Washington, DC, 2005)Google Scholar
  36. 196.
    P.B. Luppa, L.J. Sokollb, D.W. Chan, Immunosensors - principles and applications to clinical chemistry. Clin. Chim. Acta 314(1), 1-26 (2001)CrossRefGoogle Scholar
  37. 197.
    E. Prusak-Sochaczewski, J.H.T. Luong, Detection of human transferrin by the piezoelectric crystal. Anal. Lett. 23(2), 183-194 (1990)Google Scholar
  38. 198.
    S.Q. Hua, Z.Y. Wua, Y.M. Zhoua, Z.X. Caoa, G.L. Shen, R.Q. Yu, Capacitive immunosensor for transferrin based on an o-aminobenzenthiol oligomer layer. Anal. Chim. Acta 458(2), 297-304 (2002)CrossRefGoogle Scholar
  39. 199.
    H. Berneya, J. Aldermana, W. Lanea, J.K. Collins, A differential capacitive biosensor using polyethylene glycol to overlay the biolayer. Sens. Actuat. B: Chem. 44(1), 578-584 (1997)CrossRefGoogle Scholar
  40. 200.
    S. Satyanarayanaa, D.T. McCormickb, A. Majumdar, Parylene micro membrane capacitive sensor array for chemical and biological sensing. Sens. Actuat. B: Chem. 115(1), 494-502 (2006)CrossRefGoogle Scholar
  41. 201.
    J.W. Chunga, S.D. Kima, R. Bernhardtb, J.C. Pyun, Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV). Sens. Actuat. B: Chem. 111(11), 416-422 (2005)CrossRefGoogle Scholar
  42. 202.
    T.H.J. Heutmekersa, M.G.E.G. Bremer, W. Haasnoota, M.W.F. Nielen, A rapid surface plasmon resonance (SPR) biosensor immunoassay for screening of somatotropins in injection preparations. Anal. Chim. Acta 586(1), 239-245 (2007)CrossRefGoogle Scholar
  43. 203.
    C. Berggren, B. Bjarnason, G. Johansson, Capacitive biosensors. Electroanalysis 13(3), 173-180Google Scholar
  44. 204.
    K. Asami, E. Gheorghiu, T. Yonezawa, Real-time monitoring of yeast cell division by dielectric spectroscopy. Biophys. J. 76(6), 3345-3348 (1999)CrossRefGoogle Scholar
  45. 205.
    A.S. Yuwono, P.S. Lammers, Odor pollution in the environment and the detection instrumentation. Intl. J. Sci. Res. Develop. Agric. Eng. 6 (July 2004)Google Scholar
  46. 206.
    E. Ghafar-Zadeh, M. Sawan, D. Therriault, A 0.18-μm CMOS capacitive sensor Lab-on-Chip. Sens. Actuat. A: Phys. 141(2) (2008)Google Scholar
  47. 207.
    E. Ghafar-Zadeh, D. Therriault, M. Sawan, Programmable three-dimensional microfluidic fabrication by direct-write assembly. NSTI Nanotech, Ecole Polytechnique de Montréal, CA, 2006Google Scholar
  48. 208.
    E. Ghafar-Zadeh, Sawan, D. Therriault, Laboratoires-sur-puces: Nouvelle technologie de diagnostic cellulaire et moléculaire. IEEE Can. Rev. 58 (2008)Google Scholar
  49. 209.
    P. Antoniou, J. Hamilton, R. Jain, B. Holloway, B. Koopman, G. Lyberatos, S. A. Svoronos, Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria. Water Res. 24(1) (1990)Google Scholar
  50. 210.
    EE. Ghafar-Zadeh, M. Sawan, V.P. Chodavarapu, Bacteria growth monitoring through differential CMOS capacitive sensor, TBCAS, Submitted 2009Google Scholar
  51. 211.
    M. Zourob, S. Elwary, A. Turner, Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems (Springer, New York, 2007)Google Scholar
  52. 212.
    G. Decher, J.B. Schlenoff, Multilayer thin films. Chapter I of Polyelectrolyte Multilayers, an Overview (Wiley-VCH Verlag GmbH, Weinheim, 2002)Google Scholar
  53. 213.
    X. Chen, X. Yan, K.A. Khor, B. Kang, Multilayer assembly of positively charged polyelectrolyte and negatively charged glucose oxidase on a 3D Nafion network for detecting glucose. Biosens. Bioelectron. 22(12) (2007)Google Scholar
  54. 214.
    S. Zhang. W. Yang, Y. Niu, Y. Li, M. Zhang, C. Sun, Construction of glucose biosensor oxidase onto multilayers of polyelectrolyte/nanoparticles. Anal. Bioanal. Chem. 384, 736-741 (2006)Google Scholar
  55. 215.
    B. Thierry, F.M. Winnik, Y. Merhi, J. Silver, M. Tabrizian, Bioactive coatings of endovascular stents based on polyelectrolyte multilayers. Biomolecular 15(7) (2003)Google Scholar
  56. 216.
    F. Durstock, M.F. Rubner, Dielectric properties of polyelectrolyte multilayers. Langumuir 17(25) (2001)Google Scholar
  57. 217.
    A.L. Hillberg, M. Tabrizian, Biorecognition through layer-by-layer polyelectrolyte assembly: in-situ hybridization on living cells. Biomolecoular 15(7) (2006)Google Scholar
  58. 218.
    E. Ghafar-Zadeh, M. Sawan, A charge based sigma delta capacitive sensor for ultrathin polyelectrolyte layer detection. Northeast Workshop on Circuits and Systems (NEWCAS) 2008Google Scholar
  59. 219.
    A. Sze, D. Erickson, L. Ren, D. Li, Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow. J. Colloid Interface Sci. 261(2), 402-410 (2003)CrossRefGoogle Scholar
  60. 220.
    E. Ghafar-Zadeh, M. Sawan, A core-CBCM sigma delta capacitive sensor array dedicated to lab-on-chip applications. Sens. Actuat. A: Phys. 144(2) (2008)Google Scholar
  61. 221.
    Jonathan M. Cooper, Anthony E.G. Cass, Biosensors (Oxford University Press, Oxford, 2003)Google Scholar
  62. 222.
    J.V. Sagen, L. Bjørkhaug, J. Molnes, H. Raeder, L. Grevle, O. Søvik, A. Molven, P.R. Njølstad, Diagnostic screening of MODY2/GCK mutations in the Norwegian MODY Registry. Pediatr. Diabetes 9(5), 442-449 (2008)CrossRefGoogle Scholar
  63. 223.
    H.J. Park, S.K. Kim, K. Park, H.K. Lyu, C.S. Lee, S.J. Chung, W.S. Yun, M. Kim, B.H. Chung, An ISFET biosensor for the monitoring of maltose-induced conformational changes in MBP. FEBS Lett. 583(1) (2009)Google Scholar
  64. 224.
    D.S. Kim, Y.T. Jeong, H.J. Park, J.K. Shin, P. Choi, J.H. Lee, G. Lim, An FET-type charge sensor for highly sensitive detection of DNA sequence. Biosens. Bioelectron. 20(1) (2004)Google Scholar
  65. 225.
    A. Trifiro, Glucose sensor and uses thereof. U.S. Patent 0232370 A1, 2003Google Scholar
  66. 226.
    R. Lumbroso, N. Naas, L.K. Beitel, M.F. Lawrence, M.A. Trifiro, Novel bioimpedance sensor for glucose recognition. IEEE Conference on Signals, Systems and Electronics (ISSE’07), Montreal, 2007Google Scholar
  67. 227.
    G.B.B. Kristensen, K. Nerhus, G. Thue, S. Sandberg, Standardized evaluation of instruments for self-monitoring of blood glucose by patients and a technologist. Clin. Chem. 50(6), 1068-1071 (2004)CrossRefGoogle Scholar
  68. 228.
  69. 229.
    A. Salimi, E. Sharifi, A. Noorbakhsh, S. Soltanian, Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: direct electron transfer and electrocatalytic activity. Biosens. Bioelectron. 22(12), 3146-3153 (2007)CrossRefGoogle Scholar
  70. 230.
    J. Wange, Electrochemical glucose biosensors. Chem. Rev. 108(2), 814-825 (2008)Google Scholar
  71. 231.
    K. Aoki, H. Suzuki, Y. Ishimaru, S. Toyama, Y. Ikariyama, T. Iida, Thermophilic glucokinase-based sensors for the detection of various saccharides and glycosides. Sens. Actuat. B: Chem. 108(1), 727-732 (2005)CrossRefGoogle Scholar
  72. 232.
    S. D’Auria, N. DiCesare, M. Staiano, Z. Gryczynski, M. Rossi, J.R. Lakowicz, A novel fluorescence competitive assay for glucose determinations by using a thermostable glucokinase from the thermophilic microorganism Bacillus stearothermophilus. Anal. Biochem. 303(2) (2002)Google Scholar
  73. 233.
    K. Kamta, M. Mitsuya, T. Nishimura, J. Eiki, Y. Nagata, Structural basis of allosteric regulation of the monimeric allosteric enzyme human glucokinase. Structure 12(13), 429-438 (2004)CrossRefGoogle Scholar
  74. 234.
    J. Molnes, L. Bjorkhaug, O. Sovik, P.R. Njolstad, T. Flatmark, Catalytic activation of human glucokinase by substrate binding-residue contact involved in the binding of D-glucose to the super-open form and conformational transitions. FEBS J. 275(10), 2467-2481 (2008)CrossRefGoogle Scholar
  75. 235.
    E. Ghafar-Zadeh, S.F. Chowdhury, A. Aliakbar, R. Lambrose, V. Chodavarapu, L. Beital, M. Sawan, M. Trifiro, Handheld impedance biosensor system using engineered proteinaceous receptors. Submitted to Biomedical Microdevices, July 2009Google Scholar
  76. 236.
    A. Ulman, Formation and structure of self-assembled monolayers. Chem. Rev. 96(4), 1533-1554 (1996)CrossRefGoogle Scholar
  77. 237.
    F. Tao, Steven L. Bernasek, Understanding odd−even effects in organic self-assembled monolayers. Chem. Rev. 107(5), 1408-1453 (2007)Google Scholar
  78. 238.
    J.H. Fendler, Chemical self-assembly for electronic applications. Chem. Mat. 13(2), 3196-3210 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Electrical EngineeringEcole Polytechnique de MontréalMontrealCanada

Personalised recommendations