Advertisement

Capacitive Sensing Electrodes

  • Ebrahim Ghafar-Zadeh
  • Mohamad Sawan
Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

The capacitive sensing electrodes on the top of a CMOS chip serve as an interface between the microelectronic readout system and the biological/chemical analyte. These electrodes are directly exposed to the analyte or an intermediate layer which will be described in Chapter 3 (Fig. 2.1). The sensing electrode can be realized by a standard CMOS process. However for some applications, further micromachining procedure may be necessary.

Keywords

Silicon Nitride Gold Electrode Metal Layer Passivation Layer Parasitic Capacitance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 22.
    M. Kampa, E. Castanas, Human health effects of air pollution. Environ. Pollut. 151(2), 362-367 (2008)CrossRefGoogle Scholar
  2. 64.
    A. Hassibi, T.H. Lee, A Programmable 0.18-μ CMOS electrochemical sensor microarray for biomolecular detection. IEEE J. Sens. 6(6), 1380-1388 (2006)Google Scholar
  3. 75.
    S.B. Prakash, P. Abshire, On-chip capacitance sensing for cell monitoring applications. IEEE J. Sens. 7(3) (2007)Google Scholar
  4. 140.
    E. Ghafar-Zadeh, M. Sawan, D. Therriault, CMOS-based capacitive sensor lab-on-chip: a multidisciplinary approach. Analog Integr. Circuits Signal Process. 59(1) (2009)Google Scholar
  5. 141.
    E. Ghafar-Zadeh, M. Sawan, D.Therriault, Novel direct-write CMOS-based laboratory-on-chip: design, assembly and experimental results. J. Sens. Actuator A: Phys. 134(1) (2007)Google Scholar
  6. 142.
    S.B. Prakash, P. Abshire, M. Urdaneta, E. Smela, A CMOS capacitance sensor for cell adhesion characterization 2005. IEEE International Symposium on Circuits and Systems (ISCAS), May 2005Google Scholar
  7. 143.
    S.B. Prakash, P. Abshire, A CMOS capacitance sensor that monitors cell viability. IEEE Conference on Sensors, Irvine, CA, Oct 2005Google Scholar
  8. 144.
    S.B. Prakash, P. Abshire, Tracking cancer cell proliferation on a CMOS capacitance sensor chip. Biosens. Bioelectron. 23(10), 1449-1457 (2008)CrossRefGoogle Scholar
  9. 145.
    A. Hassibi, H. Vikalo, A. Hajimiri, On noise processes and limits of performance in biosensors. J. Appl. Phys. 102(1-12), 014909 (2007)Google Scholar
  10. 146.
    L. Moreno-Hagelsieb, P.E. Lobert, R. Pampin, D. Bourgeois, J. Remacle, D. Flandre. Sensitive DNA electrical detection based on interdigitated Al/Al2O3 microelectrodes. Sens. Actuator. B: Chem. 98(2-3), 269-274 (2004)CrossRefGoogle Scholar
  11. 147.
    N. Nikkhoo, C. Man, K. Maxwell, P.G. Gulak, A 0.18μm CMOS integrated sensor for the rapid identification of bacteria. Digest of Technical Papers. IEEE International Solid-State Circuits Conference, 2008. ISSCC 2008. 3-7 Feb 2008, pp. 336-617Google Scholar
  12. 148.
    S.M. Radke, E.C. Alocilja, Design and fabrication of a microimpedance biosensor for bacterial detection. IEEE Sens. J. 4(4), 434-440 (2004)CrossRefGoogle Scholar
  13. 149.
    C. Cornila, A. Hierlemann, R. Lenggenhager, P. Malcovati, H. Baltes, G. Noetzel, U. Weimar, W. Göpel, Capacitive sensors in CMOS technology with polymer coating. Sens. Actuator. B: Chem. 25(1-3), 357-361 (1995)CrossRefGoogle Scholar
  14. 150.
    S.M. Radke, E.C. Alocilja, A microfabricated biosensor for detecting foodborne bioterrorism agents. IEEE Sens. J. 5(4), 744-750 (2005)CrossRefGoogle Scholar
  15. 151.
    C. Ou, R. Yuan, Y. Chaia, M. Tanga, R. Chaia, X. Hea, A novel amperometric immunosensor based on layer-by-layer assembly of gold nanoparticles-multi-walled carbon nanotubes-thionine multilayer films on polyelectrolyte surface. Analytica Chimica Acta 603(2), 205-213 (2007)Google Scholar
  16. 152.
    T. Yina, W. Wei, L. Yanga, X. Gaoa, Y. Gaoa, A novel capacitive immunosensor for transferrin detection based on ultrathin alumina sol-gel-derived films and gold nanoparticles. Sens. Actuator. B: Chem. 117(1), 286-294 (2006)CrossRefGoogle Scholar
  17. 153.
    M. Hnaiena, M.F. Diouanib, S. Helalia, I. Hafaida, W.M. Hassena, N.J. Renaultc, A. Ghramd, A. Abdelghani, Immobilization of specific antibody on SAM functionalized gold electrode for rabies virus detection by electrochemical impedance spectroscopy. Biochem. Eng. J. 39(3), 443-449 (1 May 2008)CrossRefGoogle Scholar
  18. 154.
    Y.Y. Chena, A.C. Shua, H.Y. Hsub, H.Y. Changb, T.R. Yewa, Y.C. Lua, Y.S. Chuanga, Bacteria detection utilizing electrical conductivity. Biosens. Bioelectron. 23(12), 1856-1861 (2008)CrossRefGoogle Scholar
  19. 155.
    A. Sassolas, B.D. Leca-Bouvier, L.J. Blum, DNA biosensors and microarrays. Chem. Rev. 108, 109-139 (2008)Google Scholar
  20. 156.
    K. Kermana, D. Ozkana, P. Karaa, B. Merica, J.J. Goodingb, M. Ozsoz, Voltammetric determination of DNA hybridization using methylene blue and self-assembled alkanethiol monolayer on gold electrodes. Analytica Chimica Acta 462(1), 39-47 (2002)CrossRefGoogle Scholar
  21. 157.
    H.C. Yoon, M.Y. Hong, H.S. Kim, Affinity biosensor for Avidin using a double functionalized dendrimer monolayer on a gold electrode. Anal. Biochem. 282, 121-128Google Scholar
  22. 158.
    M. Datta, S.A. Merritt, M. Dagenais, Electroless remetallization of aluminum bond pads on CMOS driverchip for flip-chip attachment to vertical cavity surface emitting lasers(VCSEL’s). IEEE Trans. Compon. Pack. Technol. 22(2), 299-306 (1999)CrossRefGoogle Scholar
  23. 159.
    L. Berdondini, P.D. Vander-Wa, N.F. De-Rooij, M. Koudelka-Hep, Development of an electroless post-processing technique for depositing gold as electrode material on CMOS devices. Sens. Actuator. B: Chem. 99(2), 505-510 (2004)CrossRefGoogle Scholar
  24. 160.
    F. Hofmann, A.R. Frey, B. Holzapfl, M. Schienle, C. Paulus, P. Schindler-Bauer, R. Thewes, R. Hintsche, E. Nebling, J. Albers, W. Gumbrecht, Passive DNA sensor with gold electrodes fabricated in a CMOS backend process. 32nd European Conference on Solid-State Device Research Conference, Sept 2002Google Scholar
  25. 161.
    F. Hofmann, A. Frey, B. Holzapfl, M. Schienle, C. Paulus, P. Schindler-Bauer, D. Kuhlmeier, J. Krause, R. Hintsche, E. Nebling, J. Albers, W. Gumbrecht, K. Plehnert, G. Eckstein, R. Thewes, Fully electronic DNA detection on a CMOS chip: device and process issues. Electron Devices Meeting (IEDM ‘02) Dec 2002, pp. 488-491Google Scholar
  26. 162.
    C. Guiducci, C. Stagni, A. Fischetti, U. Mastromatteo, L. Benini, B. Riccò, Microelectrodes on a silicon chip for label-free capacitive DNA sensing. IEEE Sens. J. 6(5) (Oct 2006)Google Scholar
  27. 163.
    E. Ghafar-Zadeh, M. Sawan, D. Therriault, Direct-write CMOS-based laboratory-on-chip. Conference and Trade Show NSTI Nanotechnology 2 (2006)Google Scholar
  28. 164.
    E. Ghafer-Zadeh, M. Sawan, A. Shabani, M. Zourob, V. Chodavarapu, Bacteria growth monitoring through a CMOS based capacitive sensor. 14th IEEE International Mixed-Signal, Sensors, and Systems Test Workshop (IMS3TW), Vancouver, 2008Google Scholar
  29. 165.
    F. Di Ingegneria CMOS lab-on-a-chip devices for individual cell biology. Universit`a degli Studi di Bologna Dottorato di Ricerca in Ingegneria Elettronica, Informatica e delle Telecomunicazioni, 2003Google Scholar
  30. 166.
    E. Ghafar-Zadeh, M. Sawan, A charge based capacitive sensor array for Lab-on-chip applications. IEEE J. Sens. 8(4) (2008)Google Scholar
  31. 167.
    E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy (Wiley, New York, 2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Electrical EngineeringEcole Polytechnique de MontréalMontrealCanada

Personalised recommendations