Skip to main content

Carcinogenesis of Lung Cancer

  • Chapter
  • First Online:
Mechanisms of Oncogenesis

Part of the book series: Cancer Growth and Progression ((CAGP,volume 12))

  • 937 Accesses

Abstract

Lung cancer is the most common cause of mortality worldwide. It is highly associated with tobacco smoking and toxins from tobacco smoke are known to increase the risk of lung cancer, in particular adenocarcinoma. Adenocarcinoma of the lung is a stepwise accumulation of genetic abnormalities with morphological differences seen in the cytology and histology of atypical alveolar hyperplasia, bronchioloalveolar carcinoma and invasive adenocarcinoma. Multiple molecular pathways, in example loss of heterozygosity of tumor suppressor genes, chromosome breakage, deletions, nucleotide changes, amplification and hypermethylation are found in the stepwise progression of lung cancer. The recognition of proliferation markers and molecular pathways in the stepwise progression of lung cancer may allow for earlier detection and better therapy response for patients with pre-neoplastic or frank lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar, V., et al., Robbins and Cotran pathologic basis of disease. 7th ed. 2005, Philadelphia, PA: Elsevier Saunders. xv, 1525p.

    Google Scholar 

  2. Midthun, D.E. and J.R. Jett. Update on screening for lung cancer. Semin Respir Crit Care Med, 2008. 29(3): pp. 233–40.

    Article  PubMed  Google Scholar 

  3. Mazzone, P.J., T. Mekhail, and A.C. Arroliga. Is lung cancer in the nonsmoker a different disease? Chest, 2004. 126(2): pp. 326–9.

    Article  PubMed  Google Scholar 

  4. Shields, P.G. Molecular epidemiology of lung cancer. Ann Oncol, 1999. 10(Suppl. 5): pp. S7–11.

    Article  PubMed  Google Scholar 

  5. Humphrey, P.A., L.P. Dehner, and J.D. Pfeifer. The Washington manual of surgical pathology. 2008, Philadelphia, PA: Lippincott Williams & Wilkins.

    Google Scholar 

  6. Carney, D.N. Oncogenes and genetic abnormalities in lung cancer. Chest, 1989. 96(1 Suppl.): pp. 25–7S.

    CAS  PubMed  Google Scholar 

  7. Pearl, R. Tobacco smoking and longevity. Science, 1938. 87(2253): pp. 216–7.

    Article  CAS  PubMed  Google Scholar 

  8. Doll, R. and A.B. Hill. Smoking and carcinoma of the lung; preliminary report. Br Med J, 1950. 2(4682): pp. 739–48.

    Article  CAS  PubMed  Google Scholar 

  9. Mannino, D.M. Looking beyond the cigarette in COPD. Chest, 2008. 133(2): pp. 333–4.

    Article  PubMed  Google Scholar 

  10. Hecht, S.S. DNA adduct formation from tobacco-specific N-nitrosamines. Mutat Res, 1999. 424(1–2): pp. 127–42.

    CAS  PubMed  Google Scholar 

  11. Matakidou, A., T. Eisen, and R.S. Houlston. Systematic review of the relationship between family history and lung cancer risk. Br J Cancer, 2005. 93(7): pp. 825–33.

    Article  CAS  PubMed  Google Scholar 

  12. Siemes, C., et al. C-reactive protein levels, variation in the C-reactive protein gene, and cancer risk: the Rotterdam Study. J Clin Oncol, 2006. 24(33): pp. 5216–22.

    Article  CAS  PubMed  Google Scholar 

  13. Parimon, T., et al. Inhaled corticosteroids and risk of lung cancer among patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2007. 175(7): pp. 712–9.

    Article  CAS  PubMed  Google Scholar 

  14. Woodson, K., et al. Serum alpha-tocopherol and subsequent risk of lung cancer among male smokers. J Natl Cancer Inst, 1999. 91(20): pp. 1738–43.

    Article  CAS  PubMed  Google Scholar 

  15. Schabath, M.B., et al. Dietary phytoestrogens and lung cancer risk. JAMA, 2005. 294(12): pp. 1493–504.

    Article  CAS  PubMed  Google Scholar 

  16. Loganathan, R.S., et al. Prevalence of COPD in women compared to men around the time of diagnosis of primary lung cancer. Chest, 2006. 129(5): pp. 1305–12.

    Article  PubMed  Google Scholar 

  17. Travis, W.D., L.B. Travis, and S.S. Devesa. Lung cancer. Cancer, 1995. 75(1 Suppl.): pp. 191–202.

    Article  CAS  PubMed  Google Scholar 

  18. Meuwissen, R. and A. Berns. Mouse models for human lung cancer. Genes Dev, 2005. 19(6): pp. 643–64.

    Article  CAS  PubMed  Google Scholar 

  19. Hoffmann, D. and I. Hoffmann. The changing cigarette, 1950–1995. J Toxicol Environ Health, 1997. 50(4): pp. 307–64.

    Article  CAS  PubMed  Google Scholar 

  20. Bouchardy, C., S. Benhamou, and P. Dayer. The effect of tobacco on lung cancer risk depends on CYP2D6 activity. Cancer Res, 1996. 56(2): pp. 251–3.

    CAS  PubMed  Google Scholar 

  21. Atawodi, S.E., et al. 4-Hydroxy-1-(3-pyridyl)-1-butanone-hemoglobin adducts as biomarkers of exposure to tobacco smoke: validation of a method to be used in multicenter studies. Cancer Epidemiol Biomarkers Prev, 1998. 7(9): pp. 817–21.

    CAS  PubMed  Google Scholar 

  22. Yu, D., et al. Characterization of functional excision repair cross-complementation group 1 variants and their association with lung cancer risk and prognosis. Clin Cancer Res, 2008. 14(9): pp. 2878–86.

    Article  CAS  PubMed  Google Scholar 

  23. Harris, C.C., et al. Carcinogenic polynuclear hydrocarbons bind to macromolecules in cultured human bronchi. Nature, 1974. 252(5478): pp. 68–9.

    Article  CAS  PubMed  Google Scholar 

  24. Wakamatsu, N., et al. Overview of the molecular carcinogenesis of mouse lung tumor models of human lung cancer. Toxicol Pathol, 2007. 35(1): pp. 75–80.

    Article  CAS  PubMed  Google Scholar 

  25. Cibas, E.S. and B.S. Ducatman. Cytology: diagnostic principles and clinical correlates. 1996, Philadelphia, PA: W.B. Saunders. xiv, 371p.

    Google Scholar 

  26. Silverman, J.F., et al. Psammoma bodies and optically clear nuclei in bronchiolo-alveolar cell carcinoma. Diagnosis by fine needle aspiration biopsy with histologic and ultrastructural confirmation. Diagn Cytopathol, 1985. 1(3): pp. 205–15.

    Article  CAS  PubMed  Google Scholar 

  27. Yanagi, S., et al. Pten controls lung morphogenesis, bronchioalveolar stem cells, and onset of lung adenocarcinomas in mice. J Clin Invest, 2007. 117(10): pp. 2929–40.

    Article  CAS  PubMed  Google Scholar 

  28. Mulshine, J.L., et al. Initiators and promoters of lung cancer. Chest, 1993. 103(1 Suppl.): pp. 4–11S.

    CAS  PubMed  Google Scholar 

  29. Kohno, T. and J. Yokota. How many tumor suppressor genes are involved in human lung carcinogenesis? Carcinogenesis, 1999. 20(8): pp. 1403–10.

    Article  CAS  PubMed  Google Scholar 

  30. Balsara, B.R. and J.R. Testa. Chromosomal imbalances in human lung cancer. Oncogene, 2002. 21(45): pp. 6877–83.

    Article  CAS  PubMed  Google Scholar 

  31. Forgacs, E., et al. Molecular genetic abnormalities in the pathogenesis of human lung cancer. Pathol Oncol Res, 2001. 7(1): pp. 6–13.

    Article  CAS  PubMed  Google Scholar 

  32. Herbst, R.S., J.V. Heymach, and S.M. Lippman. Lung cancer. N Engl J Med, 2008. 359(13): pp. 1367–80.

    Article  CAS  PubMed  Google Scholar 

  33. Husgafvel-Pursiainen, K., et al. p53 mutations and exposure to environmental tobacco smoke in a multicenter study on lung cancer. Cancer Res, 2000. 60(11): pp. 2906–11.

    CAS  PubMed  Google Scholar 

  34. Johnson, B.E. and M.J. Kelley. Overview of genetic and molecular events in the pathogenesis of lung cancer. Chest, 1993. 103(1 Suppl.): pp. 1–3S.

    Article  Google Scholar 

  35. Cappuzzo, F., et al. Increased HER2 gene copy number is associated with response to gefitinib therapy in epidermal growth factor receptor-positive non-small-cell lung cancer patients. J Clin Oncol, 2005. 23(22): pp. 5007–18.

    Article  CAS  PubMed  Google Scholar 

  36. Fukumoto, S., et al. Overexpression of the aldo-keto reductase family protein AKR1B10 is highly correlated with smokers’ non-small cell lung carcinomas. Clin Cancer Res, 2005. 11(5): pp. 1776–85.

    Article  CAS  PubMed  Google Scholar 

  37. Ciardiello, F. and G. Tortora. EGFR antagonists in cancer treatment. N Engl J Med, 2008. 358(11): pp. 1160–74.

    Article  CAS  PubMed  Google Scholar 

  38. Ji, H., et al. The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer Cell, 2006. 9(6): pp. 485–95.

    Article  CAS  PubMed  Google Scholar 

  39. Pao, W., et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med, 2005. 2(1): p. e17.

    Article  PubMed  Google Scholar 

  40. Oremek, G.M., et al. [Cyfra 21-1 – a new tumor marker of the cytokeratin series in differential diagnosis of lung diseases]. Med Klin (Munich), 1995. 90(1): pp. 23–6.

    CAS  Google Scholar 

  41. Sun, S., J.H. Schiller, and A.F. Gazdar. Lung cancer in never smokers – a different disease. Nat Rev Cancer, 2007. 7(10): pp. 778–90.

    Article  CAS  PubMed  Google Scholar 

  42. Wakelee, H.A., et al. Lung cancer incidence in never smokers. J Clin Oncol, 2007. 25(5): pp. 472–8.

    Article  PubMed  Google Scholar 

  43. Tam, I.Y., et al. Distinct epidermal growth factor receptor and KRAS mutation patterns in non-small cell lung cancer patients with different tobacco exposure and clinicopathologic features. Clin Cancer Res, 2006. 12(5): pp. 1647–53.

    Article  CAS  PubMed  Google Scholar 

  44. Divine, K.K., et al. Multiplicity of abnormal promoter methylation in lung adenocarcinomas from smokers and never smokers. Int J Cancer, 2005. 114(3): pp. 400–5.

    Article  CAS  PubMed  Google Scholar 

  45. Okada, M., et al. Effect of histologic type and smoking status on interpretation of serum carcinoembryonic antigen value in non-small cell lung carcinoma. Ann Thorac Surg, 2004. 78(3): pp. 1004–9; discussion 1009–10.

    Article  PubMed  Google Scholar 

  46. Dutu, T., et al. Differential expression of biomarkers in lung adenocarcinoma: a comparative study between smokers and never-smokers. Ann Oncol, 2005. 16(12): pp. 1906–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Aufman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Aufman, J., Khalil, F. (2010). Carcinogenesis of Lung Cancer. In: Coppola, D. (eds) Mechanisms of Oncogenesis. Cancer Growth and Progression, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3725-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3725-1_14

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3724-4

  • Online ISBN: 978-90-481-3725-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics