Skip to main content

Fungi-Mediated Synthesis of Silver Nanoparticles: Characterization Processes and Applications

  • Chapter
Progress in Mycology

Abstract

The term “nanotechnology” is derived from the Greek word ‘nano’, meaning ‘dwarf’, and applies to the principles of engineering and manufacturing at a molecular level. The common definition of nanotechnology is that of manipulation, observation, measurement and synthesis at a scale of 1 to 100 nanometers (Raj and Asha, 2009). Nanobiotechnology is a new branch of science dedicated to the improvement and utilization of devices and structures ranging from 1 to 100 nm in size, in which new chemical, physical, and biological properties, not seen in bulk materials, can be observed. There is tremendous excitement in this field with respect to their fundamental properties, organization of superstructure and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abarca, M., M. Bragulat, G. Castellá and F. Cabanes (1994). Ochratoxin A production by strains of Aspergillus niger var. niger, Appl Environ Microbiol 60(7): 2650–2652.

    CAS  Google Scholar 

  • Ahmad, A., P. Mukherjee, S. Senapati, D. Mandal, M. I. Khan, R. Kumar and M. Sastry (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum, Colloids and Surfaces B: Biointerfaces 28: 313–318.

    Article  CAS  Google Scholar 

  • Balaji, D.S., S. Basavaraja, R. Deshpande, D. Bedre, M.B.K. Prabhakar and A. Venkataraman (2009). Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus, Colloids and Surfaces B: Biointerfaces 68: 88–92.

    Article  CAS  Google Scholar 

  • Barbara, D.J. and E. Clewes (2003). Plant pathogenic Verticillium species: how many of them are there?, Molecular Plant Pathology 4(4): 297–305.

    Article  CAS  PubMed  Google Scholar 

  • Basavaraja, S., S.D. Balaji, A. Lagashetty, A.H. Rajasab and A. Venkataraman (2008). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum, Materials Research Bulletin 43: 1164–1170.

    Article  CAS  Google Scholar 

  • Bhainsa, K.C. and S.F. D’Souza (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus, Colloids and Surfaces B: Biointerfaces 47: 160–164.

    Article  CAS  Google Scholar 

  • Bhattacharya, R and P. Mukherjee (2008). Biological properties of “naked” metal nanoparticles, Advanced Drug Delivery Reviews 60: 1289–1306.

    Article  CAS  PubMed  Google Scholar 

  • Buuirla, S.S., V.V. Tiwari, A.K. Gade, A.P. Ingle, A.P. Yadav and M.K. Rai (2008). Fuuabrication of silver nanoparticles by Phoma glomerata and its combined effect auugainst Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, Luuetters in Applied Microbiology 48: 173–179.

    Article  Google Scholar 

  • Cuuai, D., J.M. Mataraja, Z.H. Quin, Z. Huang, J. Huang and T.C. Chiles. (2005). Highly efficient molecular delivery into mammalian cells using carbon nanotubes spearing, Nat Methods 2:449–454.

    Article  Google Scholar 

  • Chen, X. and H.J. Schluesener (2008). Nanosilver: A nanoproduct in medical application, Toxicology Letters 176: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J.C., Z.H. Lin and X.X. Ma (2003). Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate, Letters in Applied Microbiology 37: 105–108.

    Article  CAS  PubMed  Google Scholar 

  • Crawford, J.M. (2005). Liver and Biliary Tract. Pathologic Basis of Disease, ed. Kumar V, Philadelphia: Elsevier Saunders. p. 924

    Google Scholar 

  • Cui, C.B. (1996). Spirotryprostatin B, a novel mammalian cell cycle inhibitor produced by Aspergillus fumigatus, Journal of Antibiotics 49: 832–835.

    CAS  PubMed  Google Scholar 

  • Dahl, J., B.L. Maddux and J.E. Hutchison (2007). Toward Greener Nanosynthesis, Chem Rev 107: 2228–2269.

    Article  CAS  PubMed  Google Scholar 

  • De la Isla, A., W. Brostow, B. Bujard, M. Estevez, J.R. Rodriguez and S. Vargas (2003). Nanohybrid Scratch Resistant Coating for Teeth and Bone Viscoelasticity Manifested in Tribology, Mat Resr Innovat 7:110–114.

    Google Scholar 

  • Durán, N., P.D. Marcato, O.L. Alves, G.I.H. De Souza and E. Esposito (2005). Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains, Journal of Nanobiotechnology 3: 1–7.

    Article  Google Scholar 

  • Durán, N., P.D. Marcato, G.I.H. De Souza, O.L. Alves and E. Esposito (2007). Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment, Journal of Biomedical Nanotechnology 3: 203–208.

    Article  Google Scholar 

  • Edelstein, R.L., C.R. Tamanaha, P.E. Sheehan, M.M. Miller, D.R. Baselt and L.J. Whitman (2000). The BARC Biosensor Applied to the Detection of Biological Warfare Agents, Biosensors Bioelectron 14:805–813.

    Article  CAS  Google Scholar 

  • Gade, A.K., P. Bonde, A.P. Ingle, P.D. Marcato, N. Durän and M.K. Rai (2008). Exploitation of Aspergillus niger for synthesis of silver nanoparticles, Journal of Biobased in Materials and Bioenergy 2: 243–247.

    Article  Google Scholar 

  • Gole, A., C. Dash, V. Ramakrishnan, S.R. Sainkar, A.B. Mandale, M. Rao and M. Sastry (2001). Pepsin-gold colloid conjugates: Preparation, characterization, and enzymatic activity, Langmuir 17:1674–1679.

    Article  CAS  Google Scholar 

  • Harman, G.E., C.R. Howell, A. Viterbo, I. Chet and M. Lorito (2004). Trichoderma species-opportunistic avirulent plant symbionts, Nature Reviews Microbiology 2: 43–56.

    Article  CAS  PubMed  Google Scholar 

  • Harman, G.E. (2006). Overview of mechanisms and uses of Trichoderma spp., Phytopathology 96: 190–194

    Article  CAS  PubMed  Google Scholar 

  • Harshberger, J.W. (1917). A Text book of Mycology and Plant Pathology. Original from the University of Michigan: P. Blakiston’s son and co. pp. 261–262.

    Google Scholar 

  • He, R., X. Qian, J. Yin and Z. Zhu (2002). Preparation of polychrome silver nanoparticles in different solvents, Journal of Materials Chemistry 12: 3783–3786.

    Article  CAS  Google Scholar 

  • Ho]cking, A.D. and S. Andrews (1987). Dichloran chloramphenicol peptone agar as an identification medium for Fusarium species and some dematiaceous hyphomycetes, Transactions of the British Mycological Society. 89: 239–244.

    Article  Google Scholar 

  • Hutchison, J.E (2008). Greener Nanoscience: A Proactive Approach to Advancing Applications and Reducing Implications of Nanotechnology, ACS Nano 2: 395–402.

    Article  CAS  PubMed  Google Scholar 

  • Ingle, A., A. Gade, S. Pierrat, C. Sönnichsen and M. Rai (2008). Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria, Current Nanoscience 4: 141–144.

    Article  CAS  Google Scholar 

  • Ingle, A., A. Gade, M. Bawaskar and M. Rai (2009). Fusarium solani: A novel biological agent for the extracellular synthesis of silver nanoparticles, Journal of Nanoparticle Research. (Doi: 10.1007/sl 1051-008-9573-y).

    Google Scholar 

  • Kim, J.S., E. Kuk, K.N. Yu, J.H. Kim, S.J. Park and H.J. Lee (2007). Antimicrobial effects of silver nanoparticles, Nanomed Nanotechnol Biol Med 3:95–101.

    Article  CAS  Google Scholar 

  • Klich, M.A. (2007). Aspergillus flavus: the major producer of aflatoxin, Molecular Plant Pathology 8(6): 713–22.

    Article  CAS  PubMed  Google Scholar 

  • Knoll, S., R.F. Vogel and L. Niesen (2002). Idenfitication of Fusarium graminearum in cereal samples by DNA detection test strip, Applied Microbiology. 34: 144–148.

    Article  CAS  Google Scholar 

  • Krasovskii, V.I.V. and A. Karavanskii (2008). Surface plasmon resonance of metal nanoparticles for interface characterization, Optical Memory and Neural Networks (Information Optics) 17: 8–14.

    Google Scholar 

  • Mah, C., I. Zolotukhin, T.J. Fraites, J. Dobson, C. Batich and B.J. Byrne (2000). Microsphere-mediated delivery of recombinant AAV vectors in vitro and in vivo, Molecular Therapy 1:239.

    Article  Google Scholar 

  • Mandal, D., M.E. Bolander, D. Mukhopadhyay, G. Sarkar and P. Mukherjee (2006). The use of microorganisms for the formation of metal nanoparticles and their application, Applied Microbiology and Biotechnology 69:485–492.

    Article  CAS  PubMed  Google Scholar 

  • Miller, J.D. (2002). Aspects of the ecology of Fusarium graminearum in cereals, Advance Experimental and Medical Biology 50: 19–27.

    Google Scholar 

  • Mohanpuria, P., N.K. Rana and S.K. Yadav (2008). Biosynthesis of nanoparticles: technological concepts and future applications, Journal of Nanoparticles Research 10: 507–517.

    Article  CAS  Google Scholar 

  • Mukherjee, P., A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar and M. Khan (2001a). Bioreduction of Aucyl ions by the fungus, Verticillum species and surface trapping of the gold nanoparticles formed, Angew Chem Int Ed 40: 3585–3583.

    Article  CAS  Google Scholar 

  • Mukherjee, P., A., Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Parishcha, P.V. Ajaykumar, M. Alam, R. Kumar and M. Sastry (2001b). Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis, Nano Letters 1: 515–519.

    Article  CAS  Google Scholar 

  • Mukherjee, P., M. Roy, B. P. Mandal, G. K. Dey, P.K. Mukherjee, J. Ghatak, A.K. Tyagi and S.P. Kale (2008). Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum, Nanotechnology 19: 075103 (7 pp).

    Article  Google Scholar 

  • O’Gorman, C.M., H.T. Fuller and P.S. Dyer (2009). Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus, Nature 457: 471–474

    Article  PubMed  Google Scholar 

  • Rai, M., A. Yadav and A. Gade (2009). Silver nanoparticles as a new generation of antimicrobials, Biotechnology Advances 27: 76–83.

    Article  CAS  PubMed  Google Scholar 

  • Rai, M.K and R.C. Rajak (1985). A Key to the identification of species of Phoma in culture, J Econ Taxon Bot, 7(3): 588–590.

    Google Scholar 

  • Raj, K.S and K.K. Asha (2009). Nanotechnology in agriculture, Trendz in Biotech, 2: 27–28.

    Google Scholar 

  • Riddin, T.L., M. Gericke and C.G. Whiteley (2006). Analysis of the inter-and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology, Nanotechnology 17: 3482–3489.

    Article  CAS  PubMed  Google Scholar 

  • Sadowski, Z., I.H. Maliszewska, B. Grochowalska, I. Polowczyk and T. Kozlecki (2008). Synthesis of silver nanoparticles using microorganisms, Materials Science-Poland 26:419–424.

    CAS  Google Scholar 

  • Samson, R.A., J. Houbraken, R.C. Summerbell, B. Flannigan and J.D. Miller (2001). Common and important species of fungi and actinomycetes in indoor environments. In: Microogranisms in Home and Indoor Work Environments. New York: Taylor and Francis. pp. 287–292.

    Google Scholar 

  • Sanghi, R. and P. Verma (2009). Biomimetic synthesis and characterisation of protein capped silver nanoparticles, Bioresource Technology 100: 501–504.

    Article  CAS  PubMed  Google Scholar 

  • Sastry, M., A. Ahmad, M.I. Khan and R. Kumar (2003). Biosynthesis of metal nanoparticles using fungi and actinomycete, Current Science 85:162–170.

    CAS  Google Scholar 

  • Schuster, E., N. Dunn-Coleman, J.C. Frisvad and P.W. Van Dijck (2002). On the safety of Aspergillus niger-a, review, Applied Microbiology and Biotechnology 59(4-5): 426–35.

    Article  CAS  PubMed  Google Scholar 

  • Seifert, K. (1996). Fusarium interactive key. Agriculture and Agri food Canada, pp 1–30.

    Google Scholar 

  • Senapati, S., D. Mandal, A. Ahmad, M. I. Khan, M. Sastry and R. Kumar (2004). Fungus mediated synthesis of silver nanoparticles: a novel biological approach, Indian Journal of Physics and Proceedings of the Indian Association for the Cultivation of Science-Part A 78A: 101–105.

    CAS  Google Scholar 

  • Sharma, V.K., R.A. Yngard and Y. Lin (2009). Silver nanoparticles: Green synthesis and their antimicrobial activities, Advanced in Colloid and Interface Science 145: 83–96.

    Article  CAS  Google Scholar 

  • Shahverdi, A.R., A. Fakhimi, H.R. Shahverdi and S. Minanian (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against S. aureus and E. coli, Nanomed 3:168–171.

    CAS  Google Scholar 

  • Shen, H.D., H. Chou, M.F. Tarn, C.Y. Chang, H.Y. Lai and S.R. Wang (2003). Molecular and immunological characterization of Pench 18, the vacuolar serine protease major allergen of Penicillium chrysogenum, Allergy 58: 993–1002.

    Article  CAS  PubMed  Google Scholar 

  • Sondi, I and S.B. Sondi (2004). Silver nanoparticles as antimicrobial agents a care study on E-coli as a model for Gram-negative bacteria, Journal of Colloid and Interface Science 275:117–182.

    Google Scholar 

  • Tan, Y., Y. Wang, L. Jiang and D. Zhu (2002). Thiosalicylic acid-functionalized silver nanoparticles synthesized in one-phase system, Journal of Colloid and Interface Science 249: 336–345.

    Article  CAS  PubMed  Google Scholar 

  • Van der Aa, H.A., M.E. Noordeloos and J. de Gruyter (1990). Species concepts in some larger genera of the Coelomycetes, Studies in Mycology 32: 3–19

    Google Scholar 

  • Vigneshwaran, N., A.A. Kathe, P.V. Varadarajan, R.P. Nachane and R.H. Balasubramanya (2006). Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium, Colloids and Surfaces B: Biointerfaces 53: 55–59.

    Article  CAS  Google Scholar 

  • Vigneshwaran, N., N.M. Ashtaputre, P.V. Varadarajan, R. P. Nachane, K. M. Paralikar and R.H. Balasubramanya (2007). Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus, Materials Letters 61: 1413–418.

    Article  CAS  Google Scholar 

  • Zare, R. and W. Gams (2001). A revision of Verticillium sect. Prostrata. III. Generic classification, Nova Hedwigia 72. 329–337.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Scientific Publishers (India)

About this chapter

Cite this chapter

DurÁn, N., Marcato, P.D., Ingle, A., Gade, A., Rai, M. (2010). Fungi-Mediated Synthesis of Silver Nanoparticles: Characterization Processes and Applications. In: Rai, M., Kövics, G. (eds) Progress in Mycology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3713-8_16

Download citation

Publish with us

Policies and ethics