Alkane Dehydrogenation

  • Michael Findlater
  • Jongwook Choi
  • Alan S. Goldman
  • Maurice Brookhart
Part of the Catalysis by Metal Complexes book series (CMCO, volume 38)


The dizzying array of disparate applications of alkenes has established them as perhaps the most important class of feedstocks in the chemical industry. The dehydrogenation of alkanes, the most abundant and inexpensive hydrocarbons, is a simple and attractive route for producing alkenes. This chapter addresses the challenges presented by the activation of strong C–H bonds present in alkanes and the ongoing need for the development of efficient and selective methods of dehydrogenation. In particular, the use of homogeneous dehydrogenation as an alternative to high temperature heterogeneous processes is discussed. A major focus of this review is on the deployment of so called ‘pincer-ligand’ based catalyst systems for use in transfer dehydrogenations. The development and use of supported pincer catalysts is considered.


Iridium Complex Linear Alkane Hydrogen Transfer Reaction Alkane Metathesis Olefin Isomerization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge the National Science Foundation (Grant CHE-0719307) for supporting J.C., and the National Science Foundation Center for Enabling New Technologies through Catalysis (CENTC) for funding 165 aspects of the work discussed in this review, and for supporting M.F. and (in part) A.S.G and M.B.


  1. 1.
    Dean JA (ed) (1985) Lange’s handbook of chemistry, 13th edn. McGraw-Hill, New YorkGoogle Scholar
  2. 2.
    Crabtree RH (1985) Chem Rev 85:245CrossRefGoogle Scholar
  3. 3.
    Goldman AS, Ghosh R (2005) In: Dyker G (ed) Handbook of C–H transformations—applications in organic synthesis. Wiley-VCH, New York, p 616Google Scholar
  4. 4.
    Morales-Morales D (2009) Iridium complexes in organic synthesis. Wiley-VCH, Weinheim, p 325Google Scholar
  5. 5.
    Dobereiner GE, Crabtree RH (2010) Chem Rev 110:681CrossRefGoogle Scholar
  6. 6.
    Choi J, MacArthur AHR, Brookhart M, Goldman AS (2011) Chem Rev 111:1761Google Scholar
  7. 7.
    Crabtree RH, Mihelcic JM, Quirk JM (1979) J Am Chem Soc 101:7738CrossRefGoogle Scholar
  8. 8.
    Baudry D, Ephritikhine M, Felkin H (1980) J Chem Soc Chem Commun 24:1243CrossRefGoogle Scholar
  9. 9.
    Baudry D, Ephritikhine M, Felkin H (1982) J Chem Soc Chem Commun 14:606CrossRefGoogle Scholar
  10. 10.
    Baudry D, Ephritikhine M, Felkin H, Holmes-Smith R (1983) J Chem Soc Chem Commun 14:788CrossRefGoogle Scholar
  11. 11.
    Felkin H, Fillebeen-Khan T, Gault Y, Holmes-Smith R, Zakrzewski J (1984) Tetrahedron Lett 25:1279CrossRefGoogle Scholar
  12. 12.
    Felkin H, Fillebeen-Khan T, Holmes-Smith R, Lin Y (1985) Tetrahedron Lett 26:1999CrossRefGoogle Scholar
  13. 13.
    Burk MJ, Crabtree RH, Parnell CP, Uriarte RJ (1984) Organometallics 3:816CrossRefGoogle Scholar
  14. 14.
    Burk MJ, Crabtree RH, McGrath DV (1985) J Chem Soc Chem Commun 24:1829CrossRefGoogle Scholar
  15. 15.
    Burk MJ, Crabtree RH (1987) J Am Chem Soc 109:8025CrossRefGoogle Scholar
  16. 16.
    Sakakura T, Tanaka M (1987) J Chem Soc Chem Commun 10:758CrossRefGoogle Scholar
  17. 17.
    Sakakura T, Tanaka M (1987) Chem Lett 16:1113CrossRefGoogle Scholar
  18. 18.
    Sakakura T, Sodeyama T, Tokunaga Y, Tanaka M (1988) Chem Lett 17:263CrossRefGoogle Scholar
  19. 19.
    Nomura K, Saito Y (1988) J Chem Soc Chem Commun 3:161CrossRefGoogle Scholar
  20. 20.
    Maguire JA, Boese WT, Goldman AS (1989) J Am Chem Soc 111:7088CrossRefGoogle Scholar
  21. 21.
    Maguire JA, Boese WT, Goldman ME, Goldman AS (1990) Coord Chem Rev 97:179CrossRefGoogle Scholar
  22. 22.
    Maguire JA, Goldman AS (1991) J Am Chem Soc 113:6706CrossRefGoogle Scholar
  23. 23.
    Maguire JA, Petrillo A, Goldman AS (1992) J Am Chem Soc 114:9492CrossRefGoogle Scholar
  24. 24.
    Belli J, Jensen CM (1996) Organometallics 15:1532CrossRefGoogle Scholar
  25. 25.
    Fujii T, Saito Y (1990) J Chem Soc Chem Commun 10:757CrossRefGoogle Scholar
  26. 26.
    Aoki T, Crabtree RH (1993) Organometallics 12:294CrossRefGoogle Scholar
  27. 27.
    Gupta M, Kaska WC, Jensen CM (1997) Chem Commun:461Google Scholar
  28. 28.
    Gupta M, Hagen C, Kaska WC, Cramer RE, Jensen CM (1997) J Am Chem Soc 119:840CrossRefGoogle Scholar
  29. 29.
    Moulton CJ, Shaw BL (1976) J Chem Soc Dalton Trans 11:1020CrossRefGoogle Scholar
  30. 30.
    Lee DW, Kaska WC, Jensen CM (1998) Organometallics 17:1CrossRefGoogle Scholar
  31. 31.
    Ghosh R, Kanzelberger M, Emge TJ, Hall GS, Goldman AS (2006) Organometallics 25:5668CrossRefGoogle Scholar
  32. 32.
    Xu W, Rosini GP, Gupta M, Jensen CM, Kaska WC, Krogh-Jespersen K, Goldman AS (1997) Chem Commun 23:2273CrossRefGoogle Scholar
  33. 33.
    Liu F, Goldman AS (1999) Chem Commun 7:655CrossRefGoogle Scholar
  34. 34.
    Krogh-Jespersen K, Czerw M, Zhu K, Singh B, Kanzelberger M, Darji N, Achord PD, Renkema KB, Goldman AS (2002) J Am Chem Soc 124:10797CrossRefGoogle Scholar
  35. 35.
    Zhu K, Achord PD, Zhang X, Krogh-Jespersen K, Goldman AS (2004) J Am Chem Soc 126:13044CrossRefGoogle Scholar
  36. 36.
    Liu F, Pak EB, Singh B, Jensen CM, Goldman AS (1999) J Am Chem Soc 121:4086CrossRefGoogle Scholar
  37. 37.
    Herrmann WA, Prinz M (2002) In: Cornils B, Herrmann WA (eds) Applied homogeneous catalysis with organometallic compounds, vol 3, 2nd edn. Wiley-VCH, Weinheim, p 1119Google Scholar
  38. 38.
    van Leeuwen PWNM (2004) In homogeneous catalysis: understanding the art. Kluwer Academic Publishers, Dordrecht, p 101Google Scholar
  39. 39.
    Biswas S, Brookhart M, Choliy Y, Goldman A, Huang Z, Krogh-Jespersen K (2010) Abstracts of papers, 239th ACS national meeting, San Francisco, CA, United States, 21–25 March 2010, INORGoogle Scholar
  40. 40.
    Renkema KB, Kissin YV, Goldman AS (2003) J Am Chem Soc 125:7770CrossRefGoogle Scholar
  41. 41.
    Kanzelberger M, Singh B, Czerw M, Krogh-Jespersen K, Goldman AS (2000) J Am Chem Soc 122:11017CrossRefGoogle Scholar
  42. 42.
    Goldman AS, Renkema KB, Czerw M, Krogh-Jespersen K (2004) In: Goldberg KI, Goldman AS (eds) Activation and functionalization of C–H bonds, ACS Symposium Series 885, Washington, DC, p 198Google Scholar
  43. 43.
    Biswas S, Choliy Y, Krogh-Jespersen K, Brookhart M, Goldman AS (2009) Abstracts of papers, 238th ACS national meeting, Washington, DC, United States, 16–20 Aug 2009, INORGoogle Scholar
  44. 44.
    Morales-Morales D, Redon R, Yung C, Jensen CM (2004) Inorg Chim Acta 357:2953CrossRefGoogle Scholar
  45. 45.
    Göttker-Schnetmann I, Brookhart M (2004) J Am Chem Soc 126:9330CrossRefGoogle Scholar
  46. 46.
    Göttker-Schnetmann I, White P, Brookhart M (2004) J Am Chem Soc 126:1804CrossRefGoogle Scholar
  47. 47.
    Biswas S, Ahuja R, Ray A, Choliy Y, Krogh-Jespersen K, Brookhart M, Goldman AS (2008) Abstracts of papers, 236th ACS national meeting, Philadelphia, PA, United States, 17–21 Aug 2008, INORGoogle Scholar
  48. 48.
    Morales-Morales D, Redon R, Wang Z, Lee DW, Yung C, Magnuson K, Jensen CM (2001) Can J Chem 79:823CrossRefGoogle Scholar
  49. 49.
    Haenel MW, Oevers S, Angermund K, Kaska WC, Hua-Jun Fan; Hall MB (2001) Angew Chem Intl Ed 40:3596Google Scholar
  50. 50.
    Punji B, Emge TJ, Goldman AS (2010) Organometallics 29:2702CrossRefGoogle Scholar
  51. 51.
    Kundu S, Choliy Y, Zhuo G, Ahuja R, Emge TJ, Warmuth R, Brookhart M, Krogh-Jespersen K, Goldman AS (2009) Organometallics 28:5432CrossRefGoogle Scholar
  52. 52.
    Kuklin SA, Sheloumov AM, Dolgushin FM, Ezernitskaya MG, Peregudov AS, Petrovskii PV, Koridze AA (2006) Organometallics 25:5466CrossRefGoogle Scholar
  53. 53.
    Huang Z, Brookhart M, Goldman AS, Kundu S, Ray A, Scott SL, Vicente BC (2009) Adv Synth Catal 351:188CrossRefGoogle Scholar
  54. 54.
    Vicente BC, Huang Z, Brookhart M, Goldman AS, Scott SL (2011) Dalton Trans 41:752CrossRefGoogle Scholar
  55. 55.
    Burnett RL, Hughes TRJ (1973) Catalysis 31:55CrossRefGoogle Scholar
  56. 56.
    Chen C-Y, O’Rear DJ (2008) Collect Czech Chem Commun 73:1105CrossRefGoogle Scholar
  57. 57.
    Dry ME (2002) Catal Today 71:227CrossRefGoogle Scholar
  58. 58.
    Leckel D (2009) Energy Fuels 23:2342CrossRefGoogle Scholar
  59. 59.
    Kamara BI, Coetzee J (2009) Energy Fuels 23:2242CrossRefGoogle Scholar
  60. 60.
    Hildebrandt D, Glasser D, Hausberger B, Patel B, Glasser BJ (2009) Science 323:1680CrossRefGoogle Scholar
  61. 61.
    International Energy Agency (IAE) World Energy Outlook 2008, pp 250–261Google Scholar
  62. 62.
    Aleklett K, Hook M, Jakobsson K, Lardelli M, Snowden S, Soderbergh B (2010) Energy Policy 38:1398CrossRefGoogle Scholar
  63. 63.
    Ayala LF, Kouassi JP (2007) Energy Fuels 21:1592CrossRefGoogle Scholar
  64. 64.
    Stockle M, Knight T (2010) Hydrocarb Process 89:55Google Scholar
  65. 65.
    Vidal V, Theolier A, Thivolle-Cazat J, Basset J-M (1997) Science 276:99CrossRefGoogle Scholar
  66. 66.
    Basset JM, Coperet C, Lefort L, Maunders BM, Maury O, Le Roux E, Saggio G, Soignier S, Soulivong D, Sunley GJ, Taoufik M, Thivolle-Cazat J (2005) J Am Chem Soc 127:8604CrossRefGoogle Scholar
  67. 67.
    Roux EL, Taoufik M, Copéret C, Mallmann Ad, Jean Thivolle-Cazat Basset J-M, Maunders BM, Sunley GJ (2005) Angew Chem 44:6755Google Scholar
  68. 68.
    Goldman AS, Roy AH, Huang Z, Ahuja R, Schinski W, Brookhart M (2006) Science 312:257CrossRefGoogle Scholar
  69. 69.
    Schrock RR, Murdzek JS, Bazan GC, Robbins J, DiMare M, O’Regan M (1990) J Am Chem Soc 112:3875CrossRefGoogle Scholar
  70. 70.
    Schrock RR (2005) Chem Commun 22:2773CrossRefGoogle Scholar
  71. 71.
    Nawara-Hultzsch AJ, Supplee C, Kundu S, Hackenberg J, Punji B, Goldman AS, Bailey BC, Schrock RR (2009) Abstract of papers, 238th ACS national meeting, Washington, DC, United States, 16–20 Aug 2009, INORGoogle Scholar
  72. 72.
    Bailey BC, Schrock RR, Kundu S, Goldman AS, Huang Z, Brookhart M (2009) Organometallics 28:355CrossRefGoogle Scholar
  73. 73.
    Huang Z, Rolfe E, Carson EC, Brookhart M, Goldman AS, El-Khalafy SH, MacArthur AHR (2010) Adv Synth Catal 352:125CrossRefGoogle Scholar
  74. 74.
    Ahuja R, Kundu S, Goldman AS, Brookhart M, Vicente BC, Scott SL (2008) Chem Commun 2:253CrossRefGoogle Scholar
  75. 75.
    Ahuja R, Punji B, Findlater M, Supplee C, Schinski W, Brookhart M, Goldman AS (2011) Nat Chem 3:167CrossRefGoogle Scholar
  76. 76.
    Smiešková A, Rojasová E, Hudec P, Šabo L (2004) Appl Catal A 268:235CrossRefGoogle Scholar
  77. 77.
    Davis R (1994) J Heterog Chem Rev 1:41Google Scholar
  78. 78.
    Komarewsky VI, Riesz CH (1939) J Am Chem Soc 61:2524CrossRefGoogle Scholar
  79. 79.
    Rueping M, Nachtsheim BJ (2010) Beilstein J Org Chem 6(6):1Google Scholar
  80. 80.
    Olah GA, Reddy VP, Prakash GKS (2005) Kirk-Othmer Encycl Chem Technol 12(5th edn.):159Google Scholar
  81. 81.
    Perego C, Ingallina P (2002) Catal Today 73:3CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyNew BrunswickUSA

Personalised recommendations