Skip to main content

Alkane Functionalization via Electrophilic Activation

Part of the Catalysis by Metal Complexes book series (CMCO,volume 38)

Abstract

Electrophilic activation, which may be defined as the substitution of a transition metal center for a proton to generate a new metal–carbon bond, is the basis of a number of promising approaches to selective catalytic functionalization of alkanes. The field was introduced by the groundbreaking chemistry exhibited by aqueous chloroplatinum complexes, reported by Shilov in the early 1970s. Since then the field has expanded greatly, and electrophilic alkane activation has been demonstrated using a wide variety of species. These include ligand-supported platinum complexes; complexes of additional late transition metals, most commonly palladium but also iridium, gold and others; and even post-transition metals such as mercury. That body of work is surveyed here, with particular emphasis on mechanistic understanding, examples of actual functionalization at sp 3-hybridized C–H bonds in alkanes and related compounds, and assessment of the further development that will be needed for practical applications.

Keywords

  • Nucleophilic Attack
  • Oxidative Addition
  • Oxidative Dehydrogenation
  • Methanesulfonic Acid
  • Reductive Elimination

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-90-481-3698-8_2
  • Chapter length: 55 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-90-481-3698-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Scheme 2.1
Scheme 2.2
Scheme 2.3
Scheme 2.4
Scheme 2.5
Scheme 2.6
Fig. 2.1
Scheme 2.7
Scheme 2.8
Scheme 2.9
Scheme 2.10
Scheme 2.11
Scheme 2.12
Scheme 2.13
Scheme 2.14
Scheme 2.15
Scheme 2.16
Scheme 2.17
Scheme 2.18
Scheme 2.19
Scheme 2.20
Scheme 2.21
Scheme 2.22
Scheme 2.23
Scheme 2.24
Scheme 2.25
Scheme 2.26
Fig. 2.2
Scheme 2.27
Scheme 2.28
Scheme 2.29
Scheme 2.30
Scheme 2.31
Scheme 2.32
Scheme 2.33
Scheme 2.34
Scheme 2.35
Scheme 2.36
Scheme 2.37
Scheme 2.38

Notes

  1. 1.

    Periana and Goddard have recently offered an alternate perspective [1]. According to their theoretical studies, reactions may be classified as electrophilic, ambiphilic or nucleophilic based on the calculated transfer of charge from alkane to metal complex, or the reverse, in the transition state for C–H activation. Many of the systems classified as ambiphilic or nucleophilic involve simultaneous interaction of the C–H bond with both the metal center and another ligand, but even if only the metal center is involved, the net transfer can still be from metal to C–H bond, if π back-donation from a filled metal orbital to the C–H σ* orbital is more important than donation from the C–H σ orbital to a vacant metal orbital. It is not clear how general or useful this approach might be (a possible illustration is discussed in Sect. 4.7); for one thing, a stated goal is to develop methods for combining C–H activations with compatible functionalization reactions, but (as we will see) in many cases the species that effects functionalization differs substantially from that responsible for the activation, so the nature of the activation (even assuming the methodology can accurately describe it) may well be entirely disconnected from potential functionalization chemistry. In any case, we will not make any use of these distinctions here.

  2. 2.

    This subject has been reviewed before, far too often to cite all of them. Some particularly relevant ones; an earlier, but considerably shorter, review of electrophilic oxidations [5]; a much more thorough coverage of Pt-mediated C–H activation and functionalization [6]; a more recent review of oxidative functionalization of alkanes in protic media [7]; a general review of transition metal catalyzed oxidative functionalization of C–H bonds [8].

  3. 3.

    For benzene activation the C–H activation step may be rate-determining, in cases where the steric constraints are not too severe; presumably the much more favorable interaction arene-metal π complex, compared to the σ alkane complex, lowers the barrier to complexation below that of C–H cleavage. This situation does not appear to arise in alkane activation by Pt(II); it is usually straightforward to decide which step is rate-determining by examining isotope exchange.

  4. 4.

    See papers cited in references [5] and [6].

References

  1. Ess DH, Nielsen RJ, Goddard WA, Periana RA (2009) J Am Chem Soc 131:11686

    CAS  Google Scholar 

  2. Thompson ME, Baxter SM, Bulls AR, Burger BJ, Nolan MC, Santarsiero BD, Schaeffer WP, Bercaw JE (1987) J Am Chem Soc 109:203

    CAS  Google Scholar 

  3. Perutz RN, Sabo-Étienne S (2007) Angew Chem Int Ed 46:2578

    CAS  Google Scholar 

  4. Labinger JA, Bercaw JE (2002) Nature 417:507

    CAS  Google Scholar 

  5. Stahl SS, Labinger JA, Bercaw JE (1998) Angew Chem Int Ed 37:2180

    Google Scholar 

  6. Fekl U, Goldberg KI (2003) Adv Inorg Chem 54:259

    CAS  Google Scholar 

  7. Chepaikin EG (2004) Kinet Catal 45:307

    CAS  Google Scholar 

  8. Dick AR, Sanford MS (2006) Tetrahedron 62:2439

    CAS  Google Scholar 

  9. Lyons TW, Sanford M (2010) Chem Rev 110:1147

    CAS  Google Scholar 

  10. Garnett JL, Hodges RJ (1967) J Am Chem Soc 89:4546

    CAS  Google Scholar 

  11. Hodges RJ, Webster DE, Wells PB (1971) J Chem Soc (A) 3230

    Google Scholar 

  12. Gol’dshleger NF, Tyabin MB, Shilov AE, Shteinman AA (1969) Zh Fiz Khim 43:2174

    Google Scholar 

  13. Gol’dshleger NF, Eskova VV, Shilov AE, Shteinman AA (1972) Zh Fiz Khim 46:1353

    Google Scholar 

  14. Shilov AE, Shul’pin GB (1987) Russ Chem Rev 56:442

    Google Scholar 

  15. Shilov AE, Shul’pin GB (1997) Chem Rev 97:2879

    CAS  Google Scholar 

  16. Shilov AE (1984) Activation of saturated hydrocarbons by transition metal complexes. Reidel, Dordrecht

    Google Scholar 

  17. Shilov AE, Shul’pin GB (2000) Activation and catalytic reactions of saturated hydrocarbons in the presence of metal complexes. Kluwer, Dordrecht

    Google Scholar 

  18. Labinger JA (2004) J Mol Catal 220:27

    CAS  Google Scholar 

  19. Labinger JA, Herring AM, Bercaw JE (1990) J Am Chem Soc 112:5628

    CAS  Google Scholar 

  20. Labinger JA (2001) in Natural Gas Conversion VI: Proceedings of the Sixth International Gas Conversion Symposium, June 18-21, 2001, Alaska. Iglesia E, Spivey JJ, Fleisch TH (eds.), Elsevier, Amsterdam, 325

    Google Scholar 

  21. Sen A, Benvenuto MA, Lin M, Hutson AC, Basickes N (1994) J Am Chem Soc 116:998

    CAS  Google Scholar 

  22. Sen A, Lin M, Kao L-C, Hutson AC (1992) J Am Chem Soc 114:6385

    CAS  Google Scholar 

  23. Lersch M, Tilset M (2005) Chem Rev 105:2471

    CAS  Google Scholar 

  24. Zamashchikov VV, Popov VG, Rudakov ES, Mitchenko SA (1993) Dokl Akad Nauk SSSR 333:34

    CAS  Google Scholar 

  25. Siegbahn PEM, Crabtree RH (1996) J Am Chem Soc 118:4442

    CAS  Google Scholar 

  26. Zhu H, Ziegler T (2006) J Organomet Chem 691:4486

    CAS  Google Scholar 

  27. Wang L, Stahl SS, Labinger JA, Bercaw JE (1997) J Mol Cat A 116:269

    CAS  Google Scholar 

  28. Stahl SS, Labinger JA, Bercaw JE (1996) J Am Chem Soc 118:5961

    CAS  Google Scholar 

  29. Holtcamp MW, Labinger JA, Bercaw JE (1997) J Am Chem Soc 119:848

    CAS  Google Scholar 

  30. Johansson L, Ryan OB, Tilset M (1999) J Am Chem Soc 121:1974

    Google Scholar 

  31. Wick DD, Goldberg KI (1997) J Am Chem Soc 119:10235

    CAS  Google Scholar 

  32. Zhong HA, Labinger JA, Bercaw JE (2002) J Am Chem Soc 124:1378

    CAS  Google Scholar 

  33. Wik BJ, Lersch M, Tilset M (2002) J Am Chem Soc 124:12116

    CAS  Google Scholar 

  34. Driver TG, Williams TJ, Labinger JA, Bercaw JE (2007) Organometallics 26:294

    CAS  Google Scholar 

  35. Chen GS, Labinger JA, Bercaw JE (2007) Proc Natl Acad Sci 104:6915

    CAS  Google Scholar 

  36. Owen JS, Labinger JA, Bercaw JE (2006) J Am Chem Soc 128:2005

    CAS  Google Scholar 

  37. Mason WR (1972) Coord Chem Rev 7:241

    CAS  Google Scholar 

  38. Scollard JD, Day M, Labinger JA, Bercaw JE (2001) Helv Chim Acta 84:3247

    CAS  Google Scholar 

  39. Peloso A (1987) Gazz Chim Ital 117:51

    CAS  Google Scholar 

  40. Peloso A (1991) Polyhedron 10:2191

    CAS  Google Scholar 

  41. Rich RL, Taube H (1954) J Am Chem Soc 76:2608

    CAS  Google Scholar 

  42. Luinstra GA, Wang L, Stahl SS, Labinger JA, Bercaw JE (1995) J Organomet Chem 504:75

    CAS  Google Scholar 

  43. Zamashchikov VV, Litvenenko SL, Uzhik ON, Galat VF (1986) Zh Obshch Khim 56:2417

    CAS  Google Scholar 

  44. Kushch LA, Lavrushko VV, Misharin YuS, Moravsky AP, Shilov AE (1983) Nouv J Chem 7:729

    CAS  Google Scholar 

  45. Horváth IT, Cook RA, Millar JM, Kiss G (1993) Organometallics 12:8

    Google Scholar 

  46. Lavrushko VV, Shilov AE, Shteinman AA (1975) Kinet Katal 16:1479

    CAS  Google Scholar 

  47. Weinberg DR, Labinger JA, Bercaw JE (2007) Organometallics 26:167

    CAS  Google Scholar 

  48. Labinger JA, Herring AM, Lyon DK, Luinstra GA, Bercaw JE, Horváth IT, Eller K (1993) Organometallics 12:895

    CAS  Google Scholar 

  49. Gaemers S, Keune K, Kluwer AM, Elsevier CJ (2000) Eur J Inorg Chem 1139

    Google Scholar 

  50. Basickes N, Hogan TE, Sen A (1996) J Am Chem Soc 118:13111

    CAS  Google Scholar 

  51. Gol’dshleger NF, Lavrushko VV, Khrushch AP, Shteinman AA (1976) Izv. Akad. Nauk SSSR Ser Khim 2174

    Google Scholar 

  52. Geletii YV, Shilov AE (1983) Kinet Katal 24:486

    CAS  Google Scholar 

  53. Bar–Nahum I, Khenkin AM, Neumann R (2004) J Am Chem Soc 126:10236

    Google Scholar 

  54. Lin M, Shen C, Garcia–Zayas EA, Sen A (1000) J Am Chem Soc 2001:123

    Google Scholar 

  55. Kreutz JE, Shukhaev A, Du W, Druskin S, Daugolis O, Ismagilov RF (2010) J Am Chem Soc 132:3128

    CAS  Google Scholar 

  56. Freund MS, Labinger JA, Lewis NS, Bercaw JE (2001) J Mol Catal 87:L11

    Google Scholar 

  57. Devries N, Roe DC, Thorn DL (1997) J Mol Catal A 189:17

    Google Scholar 

  58. Halpern J, Pribanic M (1968) J Am Chem Soc 90:5942

    CAS  Google Scholar 

  59. Baker RT, Brown GH, Carpenter J, Davis ME, Labinger JA, Bercaw JE, unpublished results

    Google Scholar 

  60. Moodley KG, Nicol MJ (1977) J Chem Soc Dalton Trans 239

    Google Scholar 

  61. Hutson AC, Lin M, Basickes N, Sen A (1995) J Organomet Chem 504:69

    CAS  Google Scholar 

  62. Sen A, Lin M, Kao L-C, Hutson AC (1992) J Am Chem Soc 114:6385

    CAS  Google Scholar 

  63. Basickes N, Sen A (1995) Polyhedron 14:197

    CAS  Google Scholar 

  64. Dangel BD, Johnson JA, Sames D (2001) J Am Chem Soc 123:8149

    CAS  Google Scholar 

  65. Johnson JA, Li N, Sames D (2002) J Am Chem Soc 124:6900

    CAS  Google Scholar 

  66. Zhu H, Ziegler T (2008) Organometallics 27:1743

    CAS  Google Scholar 

  67. Zhu H, Ziegler T (2009) Organometallics 28:2773

    CAS  Google Scholar 

  68. Chen GS, Labinger JA, Bercaw JE (2009) Organometallics 28:4899

    CAS  Google Scholar 

  69. Rostovtsev VV, Labinger JA, Bercaw JE, Lasseter TL, Goldberg KI (1998) Organometallics 17:4530

    CAS  Google Scholar 

  70. Rostovtsev VV, Henling LM, Labinger JA, Bercaw JE (2002) Inorg Chem 41:3608

    CAS  Google Scholar 

  71. Vedernikov AN (2009) Chem Commun 4781

    Google Scholar 

  72. Khusnutdinova JR, Zavalij PY, Vedernikov AN (2007) Organometallics 26:3466

    CAS  Google Scholar 

  73. Periana RA, Taube DJ, Gamble S, Taube H, Satoh T, Fujii H (1998) Science 280:560

    CAS  Google Scholar 

  74. Lange J-P, Tijm PJA (1996) Chem Engin Sci 51:2379

    CAS  Google Scholar 

  75. Conley BL, Tenn WJ, Young KJH, Ganesh SK, Meier SK, Ziatdinov VR, Mironov O, Oxgaard J, Gonzales J, Goddard WA, Periana RA (2006) J Mol Catal A 251:8

    CAS  Google Scholar 

  76. Palkovits R, Antonietti M, Kuhn P, Thomas A, Schüth F (2009) Angew Chem Int Ed 48:6909

    CAS  Google Scholar 

  77. Mylvaganam K, Bacskay GB, Hush NS (1999) J Am Chem Soc 121:4633

    CAS  Google Scholar 

  78. Mylvaganam K, Bacskay GB, Hush NS (2000) J Am Chem Soc 122:2041

    CAS  Google Scholar 

  79. Balcells D, Clot E, Eisenstein O (2010) Chem Rev 110:749

    CAS  Google Scholar 

  80. Muller RP, Philipp DM, Goddard WA (2003) Top Catal 23:81

    CAS  Google Scholar 

  81. Ziatdinov VR, Oxgaard J, Mironov OA, Young KJH, Goddard WA, Periana RA (1997) J Am Chem Soc 128:7404

    Google Scholar 

  82. Cheng JH, Li ZW, Haught M, Tang YC (2006) Chem Commun 4617

    Google Scholar 

  83. Xu Z, Oxgaard J, Goddard WA (2008) Organometallics 29:257

    Google Scholar 

  84. Muñiz K (2009) Angew Chem Int Ed 48:9412

    Google Scholar 

  85. Sehnal P, Taylor RJK, Fairlamb IJS (2010) Chem Rev 110:824

    CAS  Google Scholar 

  86. Stahl SS (2004) Angew Chem Int Ed 43:3400

    CAS  Google Scholar 

  87. Gretz E, Oliver TF, Sen A (1987) J Am Chem Soc 109:8109

    CAS  Google Scholar 

  88. Kao L-C, Hutson AC, Sen A (1991) J Am Chem Soc 113:700

    CAS  Google Scholar 

  89. Moody CJ, O’Connell JL (2000) Chem Commun 1311

    Google Scholar 

  90. An Z, Pan X, Liu X, Han X, Bao X (2006) J Am Chem Soc 128:16028

    CAS  Google Scholar 

  91. Lin M, Hogan T, Sen A (1997) J Am Chem Soc 119:6048

    CAS  Google Scholar 

  92. Shen C, Garcia-Zayas EA, Sen A (2000) J Am Chem Soc 122:4029

    CAS  Google Scholar 

  93. Muehlhofer M, Strassner T, Herrmann WA (2002) Angew Chem Int Ed 41:1745

    CAS  Google Scholar 

  94. Periana RA, Mironov O, Taube DJ, Bhalla G, Jones CJ (2003) Science 301:814

    CAS  Google Scholar 

  95. Zerella M, Mukhopadhyay S, Bell AT (2004) Chem Commun 1948

    Google Scholar 

  96. Zerella M, Kahros A, Bell AT (2006) J Catal. 237:111

    CAS  Google Scholar 

  97. We X, Ye LM, Zhu MX, Yuan YZ (2008) Chin J Catal 29:720

    Google Scholar 

  98. Fukiwara Y, Jintoku T, Uchida Y (1989) New J Chem 13:649

    Google Scholar 

  99. Nakata K, Yanaoka Y, Miyata T, Taniguchi Y, Takaki K, Fujiwara Y (1994) J Organomet Chem 473:329

    CAS  Google Scholar 

  100. Nakata K, Watanabe J, Takaki K, Fujiwara Y (1991) Chem Lett 1437

    Google Scholar 

  101. Nakata K, Jintoku T, Taniguchi Y, Takaki K, Fujiwara Y (1995) Chem Lett 244

    Google Scholar 

  102. Taniguchi Y, Hayashida T, Shibasaki H, Piao D, Kitamura T, Yamaji T, Fujiwara Y (1999) Org Lett 1:557

    CAS  Google Scholar 

  103. Kao L-C, Sen A (1991) New J Chem 15:575

    CAS  Google Scholar 

  104. Trost BM, Metzner PJ (1980) J Am Chem Soc 102:3572

    CAS  Google Scholar 

  105. Bercaw JE, Hazari N, Labinger JA (2008) J Org Chem 73:8654

    CAS  Google Scholar 

  106. Bercaw JE, Hazari N, Labinger JA, Oblad PF (2008) Angew Chem Int Ed 47:9941

    CAS  Google Scholar 

  107. Williams TJ, Caffyn AJM, Hazari N, Oblad PF, Labinger JA, Bercaw JE (2008) J Am Chem Soc 130:2418

    CAS  Google Scholar 

  108. For leading references see Campbell AN, White PB, Guzei IA, Stahl SS (2010) J Am Chem Soc 132:15116

    Google Scholar 

  109. Ke Z, Cundari TR (2010) Organometallics 29:821, and references cited therein

    Google Scholar 

  110. Dick AR, Kampf JW, Sanford MS (2005) J Am Chem Soc 127:12790

    CAS  Google Scholar 

  111. Racowski JM, Dick AR, Sanford MS (2009) J Am Chem Soc 131:10974

    CAS  Google Scholar 

  112. Powers DC, Ritter T (2009) Nat Chem 1:302

    CAS  Google Scholar 

  113. Giri R, Maugel N, Foxman BM, Yu J-Q (2008) Organometallics 27:1667

    CAS  Google Scholar 

  114. Hitce J, Retailleau P, Baudoin O (2007) Chem Eur J 13:792

    CAS  Google Scholar 

  115. Janowicz AH, Bergman RG (1982) J Am Chem Soc 104:352

    CAS  Google Scholar 

  116. Hoyano JK, Graham WAG (1982) J Am Chem Soc 104:3723

    CAS  Google Scholar 

  117. Burger P, Bergman RG (1993) J Am Chem Soc 115:10462

    CAS  Google Scholar 

  118. Arndtsen BA, Bergman RG (1970) Science 1995:270

    Google Scholar 

  119. Klei SR, Golden JT, Burger P, Bergman RG (2002) J Mol Catal A 189:79

    CAS  Google Scholar 

  120. Stour DL, Zaric S, Niu SQ, Hall MB (1996) J Am Chem Soc 118:6068

    Google Scholar 

  121. Su MD, Chu SY (1997) J Am Chem Soc 119:276

    Google Scholar 

  122. Golden JT, Andersen RA, Bergman RG (2001) J Am Chem Soc 123:5837

    CAS  Google Scholar 

  123. Klei SR, Golden JT, Tilley TD, Bergman RG (2002) J Am Chem Soc 124:2092

    CAS  Google Scholar 

  124. Klei SR, Tilley TD, Bergman RG (2002) Organometallics 21:4905

    CAS  Google Scholar 

  125. Corberán R, Sanaú M, Peris E (2006) J Am Chem Soc 128:3974

    Google Scholar 

  126. Feng Y, Jiang B, Boyle PA, Ison EA (2010) Organometallics 29:2857

    CAS  Google Scholar 

  127. Oxgaard J, Muller RP, Goddard WA, Periana RA (2004) J Am Chem Soc 126:352 (and references cited therein)

    CAS  Google Scholar 

  128. Wong-Foy AG, Bhalla G, Liu XY, Periana RA (2003) J Am Chem Soc 125:14292

    CAS  Google Scholar 

  129. Bhalla G, Liu XY, Oxgaard J, Goddard WA, Periana RA (2005) J Am Chem Soc 127:11372

    CAS  Google Scholar 

  130. Bhalla G, Periana RA (2005) Angew Chem Int Ed 44:1540

    CAS  Google Scholar 

  131. Tenn WJ, Young KJH, Bhalla G, Oxgaard J, Goddard WA, Periana RA (2005) J Am Chem Soc 127:14172

    CAS  Google Scholar 

  132. Young KJH, Mironov OA, Periana RA (2007) Organometallics 26:2137

    CAS  Google Scholar 

  133. Young KJH, Oxgaard J, Ess DH, Meier SK, Stewart T, Goddard WA, Periana RA (2009) Chem Commun 3270

    Google Scholar 

  134. Kitajima N, Schwartz J (1984) J Am Chem Soc 106:2220

    CAS  Google Scholar 

  135. Lin M, Hogan TE, Sen A (1996) J Am Chem Soc 118:4574

    CAS  Google Scholar 

  136. Hristov JH, Ziegler T (2003) Organometallics 22:3513

    CAS  Google Scholar 

  137. Chepaikin EG, Bezruchenko AP, Leshcheva AA, Boyko GN, Kuzmenkov IV, Grigoryan EH, Shilov AE (2001) J Mol Catal A 169:89

    CAS  Google Scholar 

  138. Chepaikin EG, Bezruchenko AP, Boiko GN, Gekhman AE, Moiseev II (2006) Kinet Catal 47:12

    CAS  Google Scholar 

  139. Wayland BB, Ba S, Sherry AE (1991) J Am Chem Soc 113:5305

    CAS  Google Scholar 

  140. Chan YW, Chan KS (2008) Organometallics 27:4625

    CAS  Google Scholar 

  141. Bercaw JE, Hazari N, Labinger JA (2009) Organometallics 28:5489

    CAS  Google Scholar 

  142. Skouta R, Li C-J (2008) Tetrahedron 64:4917

    CAS  Google Scholar 

  143. Jones CJ, Taube D, Ziatdinov VR, Periana RA, Nielsen RJ, Oxgaard J, Goddard WA (2004) Angew Chem Int Ed 43:4626

    CAS  Google Scholar 

  144. De Vos DE, Sels BF (2005) Angew Chem Int Ed 44:30

    Google Scholar 

  145. Levchenko LA, Sadkov AP, Lariontseva NV, Koldasheva EM, Shilova AK, Shilov AE (2002) J Inorg Biochem 88:251

    CAS  Google Scholar 

  146. Shul’pin GB, Shilov AE, Süss-Fink G (2001) Tetrahedron Lett 42:7253

    Google Scholar 

  147. King AE, Huffman LM, Casitas A, Costas M, Ribas X, Stahl SS (2010) J Am Chem Soc 132:12068

    CAS  Google Scholar 

  148. Taniguchi Y, Horie S, Takaki K, Fujiwara Y (1995) J Organomet Chem 504:137

    CAS  Google Scholar 

  149. Kirillova MV, Kirillov AM, Mandelli D, Carvalho WA, Pombeiro AJL, Shul’pin GB (2010) J Catal 272:9

    CAS  Google Scholar 

  150. Periana RA, Taube DJ, Evitt ER, Löffler DG, Wentrcek PR, Voss G, Masuda T (1993) Science 259:340

    CAS  Google Scholar 

  151. Snyder JC, Grosse AV. 1950, U. S. Patent 2493038 (cited in ref. 144)

    Google Scholar 

  152. Basickes N, Hogan TE, Sen A (1996) J Am Chem Soc 118:13111

    CAS  Google Scholar 

  153. Mukhopadhyay S, Zerella M, Bell AT (2005) Adv Synth Catal 347:1203

    CAS  Google Scholar 

  154. Mukhopadhyay S, Bell AT (2004) Adv Synth Catal 346:913

    CAS  Google Scholar 

  155. Li F, Yuan G (2005) Chem Commun 2238

    Google Scholar 

  156. Periana RA, Mirinov O, Taube DJ, Gamble S (2002) Chem Commun 2376

    Google Scholar 

  157. Gang X, Zhu YM, Birch H, Hjuler HA, Bjerrum NJ (2004) Appl Catal A 261:91

    CAS  Google Scholar 

  158. Davico GE (1997) J Phys Chem A 109:3433

    Google Scholar 

  159. Hashiguchi BG, Young KJH, Yousufuddin M, Goddard WA, Periana RA (2010) J Am Chem Soc 132:12542

    CAS  Google Scholar 

  160. Rubtsova TB, Kirjakov NV, Soloveichik GL, Shilov AE (1993) Mendeleev Commun 89

    Google Scholar 

  161. Basset J-M, Copéret C, Soulivong D, Taoufik M, Cazat JT (2010) Acc Chem Res 43:323 (and references cited therein)

    CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to the many students and posdocs, and specially to my Caltech colleague John Bercaw, with whom I have worked on this topic; their names are listed in the references to our work in this chapter. My collaboration and discussion with them have contributed greatly to any understanding and insight I have managed to convey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay A. Labinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Labinger, J.A. (2012). Alkane Functionalization via Electrophilic Activation. In: Pérez, P. (eds) Alkane C-H Activation by Single-Site Metal Catalysis. Catalysis by Metal Complexes, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3698-8_2

Download citation