Multi-Scale Projections Of Weather And Climate At The Uk Met Office

  • Carlo Buontempo
  • Anca Brookshaw
  • Alberto Arribas
  • Ken Mylne
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

Due to the availability of unprecedented computational power, national meteorological and hydrological services have had the opportunity to push the limit of predictability beyond the 2 weeks Lorenz suggested in 1963. This has been largely possible through the use of ensemble modelling. The adoption of such a technique has had a twofold effect: by averaging out the most unpredictable scales an ensemble average could directly increase forecast skill; ensembles also provide an estimate of uncertainty. This paper analyses the sources of predictability at different time scales and shows how the ensemble technique has been successfully used to inform decisions on time scales ranging from days to centuries.

Keywords

Weather forecast ensemble seasonal prediction climate projection uncertainty predictability decadal prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bowler N. E., Arribas A., Mylne K. R., Robertson K. B. and Beare S. E. 2008: The MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteorol. Soc., 134, 703–722.CrossRefGoogle Scholar
  2. Climate Change 2007: The Physical Science Basis. Fourth assessment report of IPCC, Cambridge University Press, Cambridge. ISBN 978 0521 88009-1.Google Scholar
  3. Cox P. and Stephenson D. 2006: Changing climate for prediction. Science, 317, 5835.Google Scholar
  4. Epstein E. S. 1969: Stochastic dynamic predictions. Tellus, 21, 739–759.CrossRefGoogle Scholar
  5. Graham R. J., Gordon C., Huddleston M., Davey M., Norton W., Colman A., Scaife A. A. and others 2006: The 2005-6 winter in the United Kingdom and Europe: Part 1: how the Met Office forecast was produced and communicated. Weather, 61, 327–336.CrossRefGoogle Scholar
  6. Kalnay E. 2003: Atmospheric modelling, data assimilation and predictability, Cambridge University Press, Cambridge. ISBN 0521791790.Google Scholar
  7. Leith C. E. 1974: Theoretical skill of Monte Carlo forecasts. Mon. Weather Rev., 102, 409–418.CrossRefGoogle Scholar
  8. Lorenz E. N. 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–131.CrossRefGoogle Scholar
  9. Murphy J. M., Sexton D. M. H., Barnett D. N., Jones G. S., Webb M. J., Collins M., Stainforth D. A. 2004: Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 430(12 August 2004), 768–772.CrossRefGoogle Scholar
  10. Palmer T. N., Doblas-Reyes F. J., Weisheimer A. and Rodwell M. J. 2008: Toward seamless prediction: calibration of climate change projections using seasonal forecasts. BAMS, 89, 4 (April 2008), 459–470. DOI: 10.1175/BAMS-89-4-459.CrossRefGoogle Scholar
  11. Ringer M. A., Martin G., Greeves C., Hinton T., Inness P., James P., Pope V., Scaife A. A., Slingo J., Stratton R. and Yang G. 2006a: The physical properties of the atmosphere in the new Hadley Centre Global Environment Model, HadGEM1. Part I: model description and global climatology. J. Climate, 19, 1274–1301.CrossRefGoogle Scholar
  12. Ringer M. A., Martin G., Greeves C., Hinton T., Inness P., James P., Pope V., Scaife A. A., Slingo J., Stratton R. and Yang G. 2006b: The physical properties of the atmsophere in the new Hadley Centre Global Atmospheric Model (HadGEM1): Part II: global variability and regional climate. J. Climate, 19, 1302–1326.CrossRefGoogle Scholar
  13. Smith D., Cusack S., Colman A. W., Folland C. K., Harris G. H., Murphy J. M. 2007: Improved surface temperature prediction for the coming decade from a global climate model. Science, 317, 5839 (10 August 2007), 796–799.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Carlo Buontempo
    • 1
  • Anca Brookshaw
    • 1
  • Alberto Arribas
    • 1
  • Ken Mylne
    • 1
  1. 1.UK Met OfficeDevonUK

Personalised recommendations