Empiricism Without the Senses: How the Instrument Replaced the Eye

  • Ofer Gal
  • Raz Chen-Morris
Part of the Studies in History and Philosophy of Science book series (AUST, volume 25)

Abstract

The optical instruments developed through the seventeenth century allowed peering into the very far and the very small; a spectacle never before experienced. The telescope, and later the microscope, was now expected to answer fundamental questions and resolve cosmological riddles by direct observation into the foundations of nature. But this ability came at an unexpected price and with unexpected results. For Kepler and Galileo, the new instruments did not offer extension and improvement to the senses; they replaced them altogether. To rely on their authority was to admit that the human eye is nothing but an instrument, and a flawed one at that. Rather than the intellect’s window to the world, the human senses became a part of this world, a source of obscure and unreliable data, demanding uncertain deciphering. Accurate scientific observation meant that we are always wrong.

References

  1. Alberti, Leon Battista. 1972. On Painting and on Sculpture: The Latin Texts of De Pictura and De Statua, trans and eds, introduction and notes by C. Grayson. London: Phaidon.Google Scholar
  2. Alpers, Svetlana. 1983. The Art of Describing: Dutch Art in the Seventeenth Century. Chicago: University of Chicago Press.Google Scholar
  3. Aristotle. 1984. Problems; posterior analytics. In The Complete Works of Aristotle, ed. Jonathan Barnes. Princeton: Princeton University Press.Google Scholar
  4. Agvilonius, Franciscus. 1613. Opticorum libri sex philosophis iuxta ac mathematicis utiles. Antwerp: Plantin Press, widow and sons of J. Moretus.Google Scholar
  5. Bacon, Roger. 1983. Roger Bacon’s natural philosophy: a critical edition. Incl. De multiplicatione specierum and De speculis comburentibus, trans. and ed. David C. Lindberg. Oxford: Oxford University Press.Google Scholar
  6. Baldini, Ugo. 1992. Legem impone subactis: Studi su filosofia e scienza dei gesuiti in Italia, 1540–1632. Rome: Bulzon.Google Scholar
  7. Biagioli, Mario. 2006. Galileo’s Instruments of Credit: Telescopes, Images, Secrecy. Chicago: The University of Chicago Press.CrossRefGoogle Scholar
  8. Blackwell, Richard. 1992. Galileo, Bellarmine, and the Bible. Notre Dame: University of Notre Dame Press.Google Scholar
  9. Cassirer, Ernst. 1942. The Influence of language upon the development of scientific thought. The Journal of Philosophy 39,12: 309–327.CrossRefGoogle Scholar
  10. Crombie, Alistair C. 1953. Robert Grosseteste and the Origins of Experimental Science 1100–1700. Oxford: Clarendon.Google Scholar
  11. Dear, Peter. 1995 Discipline & Experience: the Mathematical Way in the Scientific Revolution. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  12. Denery II, Dallas G. 2005. Seeing and Being Seen in the Later Medieval World: Optics, Theology and Religious Life. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  13. Descartes, René. 1998. The World and Other Writing, ed. and trans. Stephen Gaukroger. Cambridge: Cambridge University Press.Google Scholar
  14. Drake, Stillman and O’Malley, C.D. (eds. and trans.). 1960. The Controversy on the Comets of 1618: Galileo Galilei, Horatio Grassi, Mario Guiducci, Johann Kepler. Philadelphia: University of Pennsylvania Press.Google Scholar
  15. Dupré, Sven. 2003. Galileo’s telescope and celestial light. Journal for the History of Astronomy 34, 4: 369–399.Google Scholar
  16. Dupré, Sven. 2005. Ausonio’s mirrors and Galileo’s lenses: the telescope and sixteenth-century practical optical knowledge. Galilaeana: Journal of Galilean Studies 2: 145–180.Google Scholar
  17. Feldhay, Rivka. 2000. Mathematical entities in scientific discourse: Paulus Gulding and his Dissertatio de Motu Terrae. In Biographies of Scientific Objects, ed. Lorraine Daston. Chicago: University of Chicago Press.Google Scholar
  18. Gal, Ofer and Chen-Morris, Raz. 2005. The archaeology of the inverse square law part I: Metaphysical images and mathematical practices. History of Science 43.4: 391–414.Google Scholar
  19. Gal, Ofer and Chen-Morris, Raz. 2010 (in press). Baroque optics and the disappearance of the observer: From Kepler’s optics to Descartes’ doubt. Journal of the History of Ideas.Google Scholar
  20. Galilei, Galileo. 1623. Il Saggiatore (The Assayer). Rome: Giacomo Mascardi. In The Controversy on the comets of 1618: Galileo Galilei, Horatio Grassi, Mario Guiducci, Johann Kepler, Drake and O’Malley, eds. 1960. And trans. Stillman Drake and C.D. O’Malley. Philadelphia: University of Pennsylvania Press.Google Scholar
  21. Galilei, Galileo. 1890–1909. Le Opere di Galileo Galilei (20 vols) 1890–1909, ed. Favaro, A. Florence: Barbera.Google Scholar
  22. Galilei, Galileo. 1989 (1610). Sidereus Nuncius, or, The Sidereal Messenger, ed. and trans. Albert Van Helden. Chicago: University of Chicago Press.Google Scholar
  23. Grassi, Horatio. 1619. Tribus Cometis Anni M. DC. XVIII. Disputatio Astronomica. Rome: Iacobi Mascardi. In The Controversy on the comets of 1618: Galileo Galilei, Horatio Grassi, Mario Guiducci, Johann Kepler, Drake and O’Malley, eds. 1960. And trans. Stillman Drake and C.D. O’Malley. Philadelphia: University of Pennsylvania Press.Google Scholar
  24. Grosseteste, Robert. 1912. De lineis angulis et figuris. In Die Philosophischen Werke des Robert Grosseteste, Bischofs von Lincoln, ed. Ludwig Baur. Beiträge zur Geschichte der Philosophie des Mittelalters. Münster i. W.: Aschendorff.Google Scholar
  25. Guiducci, Mario. 1619. Discorso Delle Comete. Firenze: Pietro Cecconcelli. In The Controversy on the comets of 1618: Galileo Galilei, Horatio Grassi, Mario Guiducci, Johann Kepler, 1960, eds. and trans. Stillman Drake and C.D. O’Malley. Philadelphia: University of Pennsylvania Press.Google Scholar
  26. Hamburger, Jeffrey F. 2000. Seeing and believing: the suspicion of sight and the authentication of vision in late medieval art. In Imagination und Wirklichkeit: Zum Verhältnis von mentalen und realen Bildern in der Kunst der Frühen Neuzeit, eds. Alessandro Nova and Klaus Krüger, 47–69. Mainz: Von Zabern.Google Scholar
  27. Hooke, Robert. 1665. Micrographia. London: John Martin.Google Scholar
  28. Hooke, Robert. 1674. Animadversions on the... Machina Coelestis of... Johannes Hevelius. London: John Martin.Google Scholar
  29. Kepler, Johannes. 1937. Gesammelte Werke 1571–1630, eds. Walther von Dyck and Max Caspar München: C. H. Beck.Google Scholar
  30. Kepler, Johannes. 1965 [1610]. Kepler’s Conversation with Galileo’s Sidereal Messenger, trans. Edward Rosen. New York: Johnson Reprint Corp.Google Scholar
  31. Kepler, Johannes. 2000 [1604]. Optics: Paralipomena to Witelo and the Optical Part of Astronomy, trans. William H. Donahue. Santa Fe, NM: Green Lion Press.Google Scholar
  32. Lattis, James. 1994. Between Copernicus and Galileo. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  33. Lindberg, David C. 1976. Theories of Vision from Al-Kindi to Kepler. Chicago: University of Chicago Press.Google Scholar
  34. Lindberg, David C. 1968. The theory of pinhole images from antiquity to the thirteenth century. Archive for the History of Exact Sciences 5: 154–176.CrossRefGoogle Scholar
  35. Lindberg, David C. 1969. The theory of pinhole images in the fourteenth century. Archive for History of Exact Sciences 6: 299–328.CrossRefGoogle Scholar
  36. Lindberg, David C. 1984. Optics in 16th century Italy. In Novità Celsti e Crisi del Sapere, ed. P. Galuzzi, 131–148. Firenze: Giunti Barbera.Google Scholar
  37. Lindberg, David C. 1985. Laying the foundations of geometrical optics: Maurolico, Kepler, and the Medieval Tradition. In The Discourse of Light from the Middle Ages to the Enlightenment. Los Angeles: William Andrews Clark Memorial Library, UCLA 1–65.Google Scholar
  38. Malet, Antoni. 2005. Early Conceptualizations of the telescope as an optical instrument. Early Science and Medicine 10, 2: 237–262.CrossRefGoogle Scholar
  39. Park, Katherine. 1998. Impressed images: reproducing wonders. In Picturing Science and Producing Art, eds. Caroline A. Jones and Peter Galison with Amy Slaton, 254–271. New York and London: Routledge.Google Scholar
  40. Pecham, John. 1970. John Pecham and the Science of Optics: Perspectiva Communis. trans. and ed. David Lindberg. Madison: University of Wisconsin Press.Google Scholar
  41. Sarsi Sigensano, Lothario. 1619. Libra Astronomica ac Philosophica. Perugia: Marci Naccarini. In The Controversy on the comets of 1618: Galileo Galilei, Horatio Grassi, Mario Guiducci, Johann Kepler, 1960, eds. and trans. Stillman Drake and C.D. O’Malley. Philadelphia: University of Pennsylvania Press.Google Scholar
  42. Scheiner, Christoph. 1619. Reprinted 1652. Oculus, hoc est, fundamentum opticum. Innsbruck, London.Google Scholar
  43. Shea, William R. 1972. Galileo’s Intellectual Revolution. London: Macmillan. Sigensano, Lothario Sarsio. 1619. Libra astronomica ac philosophica qva Galilaei Galilaei opiniones de cometis... examinantur. Perusiae: Marci Naccarini.Google Scholar
  44. Smith, A. Mark. 1981. Getting the big picture in perspectivist optics. Isis 72, 568–589.CrossRefGoogle Scholar
  45. Spruit, Leen. 1994. Species Intelligibilis: From Perception to Knowledge (2 vols.) Leiden, New York, Köln: E.J. Brill.Google Scholar
  46. Straker, Stephen. 1971. Kepler’s Optics. Unpublished Dissertation. Indiana University.Google Scholar
  47. Tachau, Katherine. 1982. The problem of the species in Medio at Oxford in the generation after Ockham. Medieval Studies 44, 394–443.Google Scholar
  48. Tachau, Katherine. 1988. Vision and Certitude in the Age of Ockham: Optics, Epistemology and the Foundations of Semantics, 1250–1345. Leiden, New York, Köln: E. J. Brill.Google Scholar
  49. Thro, E. Broydrick. 1996. Leonardo’s early work on the pinhole camera: the astronomical heritage of Levi ben Gerson. Achademia Leonardi Vinci 9: 20–54.Google Scholar
  50. Van Helden, Albert. 1974. The telescope in the seventeenth century. Isis 65.1.Google Scholar
  51. Van Nouhuys, Tabitta. 1998. The Age of Two-Faced Janus. Leiden: Brill.Google Scholar
  52. Zik, Yaakov and Giora Hon. 2007. Geometry of light and shadow: Francesco Maurolyco (1494–1575) and the pinhole Camera. In Annals of Science 64: 4, 549–578.Google Scholar
  53. Zik, Yaakov and Albert van Helden. 2003. “Between Discovery and Disclosure.” In Beretta, Marco et al., Musa Musaei: Studies on Scientific Instruments and Collections in Honour of Mara Miniati. Firenze: L. S. Olschki, 173–190.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Ofer Gal
    • 1
  • Raz Chen-Morris
    • 2
  1. 1.Unit for History and Philosophy of ScienceThe University of Sydney, Bar Ilan UniversitySydneyAustralia
  2. 2.Science, Technology and Society ProgramThe University of Sydney, Bar Ilan UniversitySydneyAustralia

Personalised recommendations