Skip to main content

Children’s Developing Understanding of Number: Mind, Brain, and Culture

  • Chapter
  • First Online:
The Developmental Relations among Mind, Brain and Education

Abstract

This chapter describes and extends Robbie Case’s contributions to the field of children’s numerical development. Case postulated a theory of numerical development that results from an integration of two schemas essential to understanding quantity relations. These schemas depict children’s intuitions about numerical concepts that involve counting objects and comparing quantities. A conceptual structure that supports a new way of thinking emerges from this integration – a qualitatively different way of viewing the quantitative world. This new structure is termed a central numerical structure, which serves as a focal hub for children’s understandings of a broad range of numerical activities and situations that are culturally defined. The current chapter takes these ideas in two directions: one is to explore the potential origins of the counting and quantity schemas and the other is to examine the development of central numerical structures in cultural contexts. The former presents an argument that the two, initial structures parallel the two “core” systems of number for infants: Recent findings from cognitive sciences and neurosciences show that infants may possess such systems of number that allow them to represent discrete numerosity (similar to the counting schema) and approximate numerical magnitudes (similar to the quantity schema). For the latter, the chapter presents evidence from two cross-national studies that showed equivalent patterns of development of central numerical structures between American and Japanese children, despite large achievement differences in mathematics. The chapter ends with an attempt to link recent developments in neurosciences to cognitive and cultural studies of the numerical mind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is in accord with Weber’s Law that states that discriminability of two quantities is a function of their ratio.

  2. 2.

    Infants’ precision improves. The ratio of success at 9 months is 2:3 (e.g., Lipton & Spelke, 2003).

  3. 3.

    Carey and colleagues refer to this system of representation as “parallel individuation.”

  4. 4.

    Macaque monkeys are able to track up to four items (e.g., Hauser, Carey, & Hauser, 2000).

  5. 5.

    Ross-Sheehy, Oakes, and Luck (2003) reported that infants were able to hold four units.

  6. 6.

    There is evidence that older children and adults use an analog magnitude system to assess numerical magnitudes when prevented from counting (see, for example, Barth, Kanwisher, & Spelke, 2003).

  7. 7.

    Due to neural plasticity, neural connections may be altered reflecting life experiences.

References

  • Ansari, D., Dhital, B., & Siong, S. C. (2006). Parametric effects of numerical distance on the intraparietal sulcus during passing viewing of rapid numerosity changes. Bran Research, 1067, 181–188.

    Google Scholar 

  • Ansari, D., Lyons, I., van Eimeren, L., & Xu, F. (2007). Linking visual attention and number processing in the brain: The role of temporo-parietal junction in small and large non-symbolic number comparison. Journal of Cognitive Neuroscience, 19, 1845–1853.

    Google Scholar 

  • Arbib, M. A. (2006). The mirror system hypothesis on the linkage of action and languages. In M. A. Arbib (Ed.), Action to language via the mirror neuron system (pp. 3–47). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Antell, S. E., & Keating, L. E. (1983). Perception of numerical invariance by neonates. Child Development, 54, 695–701.

    Google Scholar 

  • Barth, H., Kanwisher, N., & Spelke, E. (2003). The construction of large number representations in adults. Cognition, 86, 201–221.

    Google Scholar 

  • Bates, A., Okamoto, Y., & Romo, L. (2009). Counting on mom: Maternal explanations to young children about numerical quantity comparison. Manuscript submitted for publication.

    Google Scholar 

  • Brannon, E. M. (2006). The representation of numerical magnitude. Current Opinion in Neurobiology, 16, 222–229.

    Google Scholar 

  • Case, R. (1985). Intellectual development: Birth to adulthood. New York: Academic Press.

    Google Scholar 

  • Case, R. (1992a). The role of the frontal lobes in the regulation of cognitive development. Brain and cognition, 20, 51–73.

    Google Scholar 

  • Case, R. (1992b). The mind’s staircase: Exploring the conceptual underpinnings of children’s thought and knowledge. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Case, R. (1996).Introduction: Reconceptualizing the nature of children’s conceptual structures and their development in middle childhood. In R. Case & Y. Okamoto (Eds.), The role of central conceptual structures in the development of children’s thought. Monographs of the Society for Research in Child Development, 61 (1-2, Serial No. 246), 1–26.

    Google Scholar 

  • Case, R. (1998). The development of conceptual structures. In D. Kuhn & R. S. Siegler (Eds.), Handbook of child psychology: Volume 2: Cognition, perception, and language (pp. 745–800). Hoboken, NJ: John Wiley & Sons Inc.

    Google Scholar 

  • Case, R., & Griffin, S. (1989). Child cognitive development: The role of central conceptual structure in the development of scientific and social thought. In C. A. Haver (Ed.), Advances in psychology: Developmental psychology (pp. 193–230). North Holland: Elsevier.

    Google Scholar 

  • Case, R., Griffin, S., & Capodilupo, S. (1995). Teaching for understanding: The importance of central conceptual structures in the elementary school mathematics curriculum. In A. McKeough & J. Lupart (Eds.), Teaching for transfer (pp.123–152). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Case, R., & Okamoto, Y. (1996). The role of central conceptual structures in the development of children’s thought. Monographs of the Society for Research in Child Development, 61(1-2, Serial No. 246).

    Google Scholar 

  • Case, R., & Sandieson, R. (1988). A developmental approach to the identification and teaching of central conceptual structures in the middle grades. In J. Hiebert & M. Behr (Eds.), Research agenda in mathematics education: Number concepts and operations in the middle grades (pp. 236–270). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Clearfield, M. W., & Mix, K. S. (1999). Number versus contour length in infants’ discrimination of small visual sets. Psychological Science, 10, 408–411.

    Google Scholar 

  • Chochon, F., Cohen, L., van de Moortele, P. F., & Dehaene, S. (1999). Differential contributions of the left and right inferior parietal lobules to number processing. Journal of Cognitive Neuroscience, 11, 617–630.

    Google Scholar 

  • Dehaene, S. (1997). The number sense. New York: Oxford University Press.

    Google Scholar 

  • Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83–120.

    Google Scholar 

  • Dehaene, S., Molko, N., Cohen, L., & Wilson, A. J. (2004). Arithmetic and the brain. Current Opinion in Neurobiology, 14, 218–224.

    Google Scholar 

  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487–506.

    Google Scholar 

  • Dehaene, S., Spelke, E., Stanescu, R., Pinel, P., & Tsivkin, S. (1999). Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science, 284, 970–974.

    Google Scholar 

  • Dennett, D. C. (1991). Consciousness explained. Boston, MA: Little, Brown and Company.

    Google Scholar 

  • Ericsson, K. A. (2003). The search for general abilities and basic capacities: Theoretical implications from the modifiability and complexity of mechanisms mediating expert performance. In R. J. Sternberg & E. L. Grigorenko (Eds.), Perspectives on the psychology of abilities, competencies, and expertise (pp. 93–125). Cambridge, England: Cambridge University Press.

    Chapter  Google Scholar 

  • Ericsson, K. A., Krampe, R. T., & Tesch-Romer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100, 363–406.

    Google Scholar 

  • Ericsson, K. A., Nandagopal, K., & Roring, R. W. (2005). Giftedness viewed from the expert performance perspective. Journal for the Education of the Gifted, 8, 287–311.

    Google Scholar 

  • Feigenson, L., & Carey, S. (2005). On the limits of infants’ quantification of small object arrays. Cognition, 97, B13–B23.

    Google Scholar 

  • Feigenson, L., Carey, S., & Hauser, M. D. (2002). The representations underlying infants’ choice of more: Object files versus analog magnitudes. Psychological Science, 13, 150–156.

    Google Scholar 

  • Feigenson, L., Carey, S., & Spelke, E. (2002). Infants’ discrimination of number vs. continuous extent. Cognitive Psychology, 44, 33–66.

    Google Scholar 

  • Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307–314.

    Google Scholar 

  • Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44, 43–74.

    Google Scholar 

  • Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Gordon, P. (2004). Numerical cognition without words: Evidence from Amazonia. Science, 306, 496–499.

    Google Scholar 

  • Goswami, U. (1995). Transitive relational mappings in three-and four-year-olds: The analogy of goldilocks and the three bears. Child Development, 66, 877–892.

    Google Scholar 

  • Greenfield, P. (2006). Implications of mirror neurons for the ontogeny and phylogeny of cultural processes: The examples of tools and language. In M. A. Arbib (Ed.), Action to language via the mirror neuron system (pp. 501–533). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Griffin, S., & Case, R. (1996). Evaluating the breadth and depth of training effects when central conceptual structures are taught. In R. Case & Y. Okamoto (Eds.), The role of central conceptual structures in the development of children’s thought. Monographs of the Society for Research in Child Development, 61 (1-2, Serial No. 246), 83–102.

    Google Scholar 

  • Griffin, S., Case, R., & Siegler, R. (1994). Rightstart: Providing the central conceptual prerequisites for first formal learning of arithmetic to students at risk for school failure. In K. McGilly (Ed.), Classroom lessons: Integrating cognitive theory and classroom practice (pp. 25–49). Cambridge, MA: MIT Press.

    Google Scholar 

  • Hauser, M. D., Carey, S., & Hauser, L. B. (2000). Spontaneous number representation in semifree-ranging rhesus monkeys. Proceedings of the Royal Society of London: Biological Sciences, 267, 829–833.

    Google Scholar 

  • Hunting, R. P., & Sharpley, C. F. (1988). Fraction knowledge in preschool children. Journal for Research in Mathematics Education, 19, 175–180.

    Google Scholar 

  • Iacoboni, M. (2005). Understanding others: Imitation, language, empathy. In S. Hurley & N. Chater (Eds.), Perspectives on imitation: From cognitive neuroscience to social science (pp. 77–99). Cambridge, MA: MIT Press.

    Google Scholar 

  • Iacoboni, M., Woods, P. R., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286, 2526–2528.

    Google Scholar 

  • Johnson-Frey, S. H., Newman-Norlund, R., & Grafton, S. T. (2005). A distributed left hemisphere network active during planning of everyday tool use skills. Cerebral Cortex, 15, 681–695.

    Google Scholar 

  • Jordan, N. C., Hanich, L. B., & Kaplan, D. (2003). A longitudinal study of mathematical competencies in children with specific mathematics difficulties versus children with comorbid mathematics and reading difficulties. Child Development, 74, 834–850.

    Google Scholar 

  • Jordan, N. C., Kaplan, D., Olah, L. N., & Locuniak, M. N. (2006). Number sense growth in kindergarten: A longitudinal investigation of children at risk for mathematics difficulties. Child Development, 77, 153–175.

    Google Scholar 

  • Kalchman, M., Moss, J., & Case, R. (2001). Psychological models for the development of mathematical understanding: Rational numbers and functions. In S. M. Carver & D. Klahr (Eds.), Cognition and instruction: Twenty-five years of progress (pp. 1–38). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Landau, B. (1998). Innate knowledge. In W. Bechtel & G. Graham (Eds.), A companion to cognitive science (pp. 576–589). Malden, MA: Blackwell Publishers.

    Google Scholar 

  • Le Corte, M., & Carey, S. (2007). One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting principles. Cognition, 105, 395–438.

    Google Scholar 

  • Lipton, J. S., & Spelke, E. S. (2003). Origins of number sense: Large-number discrimination in human infants. Psychological Science, 14, 396–401.

    Google Scholar 

  • Mix, K. S., Levine, S. C., & Huttenlocher, J. (1997). Numerical abstraction in infants: Another look. Developmental Psychology, 33, 423–428.

    Google Scholar 

  • Mix, K. S., Huttenlocher, J., & Levine, S. C. (2002). Multiple cues for quantification in infancy: Is number one of them? Psychological Bulletin, 128, 278–294.

    Google Scholar 

  • Molnar-Szakacs, I., & Overy, K. (2006). Music and mirror neurons: From motion to ‘e’motion. Social Cognitive and Affective Neuroscience, 1, 235–241.

    Google Scholar 

  • Molnar-Szakacs, I., Wu, A. D., Robles, F. J., & Iacoboni, M. (2007). Do you see what I mean? Corticospinal excitability during observation of culture- specific gestures. PLoS ONE 2(7): e626. doi:10.1371/journal.pone. 0000626.

    Google Scholar 

  • Moss, J. (2005) Pipes, tubes, and beakers: Teaching rational number. In J. Bransford & S. Donovan (Eds.), How students learn: Mathematics in the classroom (pp. 309–350). Washington, DC: National Academies Press.

    Google Scholar 

  • Moss, J., & Case, R. (1999). Developing children’s understanding of rational numbers: A new model and experimental curriculum. Journal for Research in Mathematics Education, 330, 122–147.

    Google Scholar 

  • Mullis, I. V.S., Martin, M. O., Gonzalez, E. J., Gregory, K. D., Garden, R. A., O’Connor, K. M., et al. (2000). TIMSS 1999 International Mathematics Report: Findings from IEA’s Repeat of The Third International Mathematics and Science Study at the Eighth Grade. Chestnut Hill, MA: TIMSS and PIRLS International Study Center, Boston College.

    Google Scholar 

  • Mullis, I. V. S., Martin, M. O., Gonzalez, E. J., & Chrostowski, S. J. (2005). TIMSS 2003 International Mathematics Report: Findings From IEA’s Trends in International Mathematics and Science Study at the Fourth and Eighth Grades. Chestnut Hill, MA: TIMSS and PIRLS International Study Center, Boston College.

    Google Scholar 

  • Nakamura, A., Maess, B., Knösche, T. R., Gunter, T. C., Bach, P., & Friederici, A. D. (2004). Cooperation of different neuronal systems during hand sign recognition. Neuroimage, 23, 25–34.

    Google Scholar 

  • Nelson, C. A., Zeanah, C. H., Fox, N. A. Romer, D., & Walker, E. F. (2007). The effects of early deprivation on brain-behavioral development: The Bucharest early Intervention project. Adolescent psychopathology and the developing brain: Integrating brain and prevention science (pp. 197–215). New York, NY: Oxford University Press.

    Chapter  Google Scholar 

  • Nieder, A., Freedman, D. J., & Miller, E. K. (2002). Representation of the quantity of visual items in the primate prefrontal cortex. Science, 297, 1708–1711.

    Google Scholar 

  • Okamoto, Y. (1996). Developing central conceptual understandings in mathematics. Proceedings of the International Conference on Reform Issues on Teacher Education, 417–455.

    Google Scholar 

  • Okamoto, Y., Case, R., Bleiker, C., & Henderson, B. (1996). Cross cultural investigations. In R. Case & Y. Okamoto (Eds.), The role of central conceptual structures in the development of children’s thought. Monographs of the Society for Research in Child Development, 61 (1-2, Serial No. 246), 131–155.

    Google Scholar 

  • Okamoto, Y., Curtis, R., Chen, P. C., Kim, S., & Karayan, S. (1997). A cross-national comparison of children’s intuitive number sense: Its development and relation to formal mathematics learning: Final report. Submitted to Spencer Foundation.

    Google Scholar 

  • Opfer, J. E., & Siegler, R. S. (2007). Representational change and children’s numerical estimation. Cognitive Psychology, 55, 169–195.

    Google Scholar 

  • Pettito, A. L. (1990). Development of numberline and measurement concepts. Cognition and Instruction, 7, 55–78.

    Google Scholar 

  • Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306, 499–503.

    Article  Google Scholar 

  • Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual understanding and procedural skill in mathematics: An iterative process. Journal of Educational Psychology, 93, 346–362.

    Article  Google Scholar 

  • Ross-Sheehy, S., Oakes, L., & Luck, S. J. (2003). The development of visual short-term memory capacity in infants. Child Development, 74, 1807–1822.

    Article  Google Scholar 

  • Saxe, G. B. (1977). A developmental analysis of notational counting. Child Development, 48, 1512–1520.

    Article  Google Scholar 

  • Scherf, K. S., Behrmann, M., Humphreys, K., & Luna, B. (2007). Visual category-selectivity for faces, places and objects emerges along different developmental trajectories. Developmental Science, 10, F15–F30.

    Article  Google Scholar 

  • Siegler, R. S. & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75, 428–444.

    Article  Google Scholar 

  • Siegler, R. S., & Opfer, J. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14, 237–243.

    Article  Google Scholar 

  • Simon, T. J. (1997). Reconceptualizing the origins of number knowledge: A non-numerical account. Cognitive Development, 12, 349–372.

    Article  Google Scholar 

  • Sophian, C. (1987). Early developments in children’s use of counting to solve quantitative problems. Cognition and Instruction, 4, 61–90.

    Article  Google Scholar 

  • Sophian, C. (1988). Early development in children’s understanding of number: Inferences about numerosity and one-to-one correspondence. Child Development, 59, 1397–1414.

    Article  Google Scholar 

  • Starkey, P. (1992). The early development of numerical reasoning. Cognition, 43, 93–126.

    Article  Google Scholar 

  • Starkey, P., & Cooper, R. G. (1980). Perception of numbers by human infants. Science, 210, 1033–1035.

    Article  Google Scholar 

  • Starkey, P., Spelke, E. S., & Gelman, R. (1983). Detection of intermodal numerical correspondences by human infants. Science, 222, 179–181.

    Article  Google Scholar 

  • Starkey, P., Spelke, E. S. & Gelman, R. (1990). Numerical abstraction by human infants. Cognition, 36, 97–128.

    Article  Google Scholar 

  • Stevenson, H. W., Lee, S. Y., & Stigler, J. W. (1986). Mathematics achievement of Chinese, Japanese and American children, Science, 231, 693–699.

    Article  Google Scholar 

  • Strauss, M. S., & Curtis, L. E. (1981). Infant perception of numerosity. Child Development, 52, 1146–1152.

    Article  Google Scholar 

  • Uller, C., Huntley-Fenner, G., Carey, S., & Klatt, L. (1999). What representations might underlie infant numerical knowledge? Cognitive Development, 14, 1–36.

    Article  Google Scholar 

  • Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27, 92–114.

    Article  Google Scholar 

  • Wexler, B. E. (2006). Brain and culture: Neurobiology, ideology, and social change. Cambridge, MA: MIT Press.

    Google Scholar 

  • Wood, J. N., & Spelke, E. S. (2005). Infants’ enumeration of actions: Numerical discrimination and its signature limits. Developmental Science, 8, 173–181.

    Article  Google Scholar 

  • Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358, 749–750.

    Article  Google Scholar 

  • Wynn, K. (1996). Infants’ individuation and enumeration of actions. Psychological Science, 7, 164–169.

    Article  Google Scholar 

  • Xu, F. (2003). Numerosity discrimination in infants: Evidence for two systems of representations, Cognition, 89, B15–B25

    Article  Google Scholar 

  • Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74, B1–B11.

    Article  Google Scholar 

  • Xu, F., Spelke, E. S., & Goddard, S. (2005). Number sense in human infants, Developmental Science, 8, 88–101.

    Article  Google Scholar 

Download references

Acknowledgments

I thank Marion Porath, Michel Ferrari, Ljiljana Vuleti, Gregory Jarrett, and John Jabagchourian for their helpful comments on earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukari Okamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Okamoto, Y. (2010). Children’s Developing Understanding of Number: Mind, Brain, and Culture. In: Ferrari, M., Vuletic, L. (eds) The Developmental Relations among Mind, Brain and Education. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3666-7_6

Download citation

Publish with us

Policies and ethics