Skip to main content

On the Photonic Dispersion of Periodic Superlattices Made of Left-Handed Materials

  • Conference paper
Book cover Extreme Photonics & Applications

Studies of the band gap properties of one-dimensional superlattices with alternate layers of air and left-handed materials are carried out within the framework of Maxwell's equations. By left-handed material, we mean a material with dispersive negative electric and magnetic responses. Modeling them by Drude-type responses or by fabricated ones, we characterize the ⟨">">">>n(ω)⟩ = 0 gap, i.e., the zeroth order gap, which has been predicted and detected. The band structure and analytic equations for the band edges have been obtained in the long wavelength limit in case of periodic, Fibonacci, and Thue-Morse superlattices. Our studies reveal the nature of the width of the zeroth order band gap, whose edge equations are defined by null averages of the response functions. Oblique incidence is also investigated, yielding remarkable results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andre, A., Lukin, M.D.: Manipulating light pulses via dynamically controlled photonic band gap. Phys. Rev. Lett. 89(14), 143602 (2002).

    Article  CAS  Google Scholar 

  • Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424(6950), 824 (2003).

    Article  CAS  Google Scholar 

  • Bria, D., Djafari-Rouhani, B., Akjouj, A., Dobrzynski, L., Vigneron, J.P., El Boudouti, E.H., Nougaoui, A.: Band structure and omnidirectional photonic band gap in lamellar structures with left-handed materials. Phys. Rev. E 69(6), 066613 (2004).

    Article  CAS  Google Scholar 

  • Bruno-Alfonso, A., Reyes-Gómez, E., Cavalcanti, S.B., Oliveira, L.E.: Band edge states of the ⟨n⟩ = 0 gap of Fibonacci photonic lattices. Phys. Rev. A 78(3), 035801 (2008a).

    Article  CAS  Google Scholar 

  • Bruno-Alfonso, A., Reyes-Gómez, E., Cavalcanti, S.B., Oliveira, L.E.: Band-edge states of the zeroth-order gap in quasi-periodic photonic superlattices. In Tománek, P., Senderáková, D., Hrabovsky, M. (eds.) Photonics, Devices, and Systems IV. Proc. of SPIE Vol. 7138, 71381A (2008b).

    Google Scholar 

  • Busch, K., John, S.: Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum. Phys. Rev. Lett. 83(5), 967 (1999).

    Article  CAS  Google Scholar 

  • Cavalcanti, S.B., Dios-Leyva, M., Reyes-Gómez, E., Oliveira, L.E.: Band structure and band-gap control in photonic superlattices. Phys. Rev. B 74(15), 153102 (2006).

    Article  CAS  Google Scholar 

  • Cavalcanti, S.B., Dios-Leyva, M., Reyes-Gómez, E., Oliveira, L.E.: Photonic band structure and symmetry properties of electromagnetic modes in photonic crystals. Phys. Rev. E 75(2), 026607 (2007), and references therein.

    Article  CAS  Google Scholar 

  • Cubuku, E., Aydin, K., Ozbay, E., Foteinopolou, S., Soukoulis, C.M.: Subwavelength resolution in a two-dimensional photonic-crystal-based superlens. Phys. Rev. Lett. 91(20), 207401 (2003).

    Article  CAS  Google Scholar 

  • Daninthe, H., Foteinopoulou, S., Soukoulis, C.M.: Omni-reflectance and enhanced resonant tunneling from multilayers containing left-handed materials. Phot. Nanostruct. Fund. Appl. 4(3), 123 (2006).

    Article  Google Scholar 

  • Duque, CA., Porras-Montenegro, N., Cavalcanti, S.B., Oliveira, L.E.: Photonic band structure evolution of a honeycomb lattice in the presence of an external magnetic field. J. Appl. Phys. 105(3), 034303 (2009).

    Article  CAS  Google Scholar 

  • Edwards, B., Alu, A., Young, M.E., Silveirinha, M., Engheta, N.: Multifrequency optical invisibility cloak with layered plasmonic shells. Phys. Rev. Lett. 100(11), 033903 (2008).

    Article  CAS  Google Scholar 

  • Eleftheriades, G.V., Iyer, A.K., Kremer, P.C.: Planar negative refractive index media using periodically L-C loaded transmission lines. IEEE Trans. Microwave Theory Tech. 50(12), 2702 (2002).

    Article  Google Scholar 

  • Fredkin, D.R., Ron, A.: Effectively left-handed (negative index) composite material. Appl. Phys. Lett. 81(10), 1753 (2002).

    Article  CAS  Google Scholar 

  • Grbic, A., Eleftheriades, G.V.: Experimental verification of backward-wave radiation from a negative refractive index metamaterial. J. Appl. Phys. 92(10), 5930 (2002).

    Article  CAS  Google Scholar 

  • Jiang, H., Chen, H., Li, H., Zhang, Y., Zhu, S.: Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials. Appl. Phys. Lett. 83(26), 5386 (2003).

    Article  CAS  Google Scholar 

  • Kleckner, T.D., Modotto, D., Locatelli, A., Mondia, J.P., Linden, S., Morandotti, R., De Angelis, C., Stanley, C.R., van Driel, H.M., Aitchison, J.S.: Design, fabrication, and characterization of deep-etched waveguide gratings. J. Light. Tech. 23(12), 3832 (2005).

    Article  Google Scholar 

  • Konoplev, I.V., McGrane, P., Cross, A.W., Ronald, K., Phelps, A.D.R.: Wave interference and band gap control in multiconductor one-dimensional Bragg structures. J. of Appl. Phys. 97(7), 073101 (2005a).

    Article  CAS  Google Scholar 

  • Konoplev, I.V., McGrane, P., Phelps, A.D.R., Cross, A.W., Ronald, K.: Observation of photonic band-gap control in one-dimensional Bragg structures. Appl. Phys. Lett. 87(12), 121104 (2005b), and references therein.

    Article  CAS  Google Scholar 

  • Kosaka, H., Kawashima, T., Tomita, A., Notomi, N., Tamamura, T., Sato, T., Kawakami, S.: Superprism phenomena in photonic crystals. Phys. Rev. B 58(16), 10096 (1998).

    Article  Google Scholar 

  • Li, J., Zhou, L., Chan, C.T., Sheng, P.: Photonic band gap from a stack of positive and negative index materials. Phys. Rev. Lett. 90(8), 083901 (2003).

    Article  CAS  Google Scholar 

  • Liu, L., Caloz, C., Chang, C.C., Itoh, T.: Forward coupling phenomena between artificial left-handed transmission lines. J. Appl. Phys. 92(9), 5560 (2002).

    Article  CAS  Google Scholar 

  • Longhi, S., Janner, D.: Diffraction and localization in low-dimensional photonic bandgaps. Optics Lett. 29(22), 2653 (2004).

    Article  Google Scholar 

  • Lord Rayleigh: On the maintenance of vibrations by forces of double frequency and on the propagation of waves through a medium endowed with a periodic structure. Phil. Mag. XXIV, 145 (1887).

    Google Scholar 

  • Maier, S.A., Atwater, H.A.: Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98(1), 011101 (2005).

    Article  CAS  Google Scholar 

  • Mishra, S., Satpathy, S.: One-dimensional photonic crystal: The Kronig-Penney model. Phys. Rev. B 68(4), 045121 (2003).

    Article  CAS  Google Scholar 

  • Murzina, T.V., Sychev, F.Yu., Kim, E.M., Rau, E.I., Obydena, S.S., Aktsipetrov, O.A., Bader, M.A., Marowsky, G.: One-dimensional photonic crystals based on porous n-type silicon. J. Appl. Phys. 98(12), 123702 (2005).

    Article  CAS  Google Scholar 

  • Ozbay, E.: Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311(5758), 189 (2006).

    Article  CAS  Google Scholar 

  • Pacheco, J.Jr., Grzegorczyk, T.M., Wu, B.-I., Zhang, Y., Kong, J.A.: Power propagation in homogeneous isotropic frequency-dispersive left-handed media. Phys. Rev. Lett. 89(25), 257402 (2002).

    Article  CAS  Google Scholar 

  • Parimi, P.V., Lu, W.T., Vodo, P., Sridhar, S.: Photonic crystals — Imaging by flat lens using negative refraction. Nature 426(6965), 404 (2003).

    Article  CAS  Google Scholar 

  • Shadrivov, I.V., Zharova, N.A., Kivshar, Y.S.: Defect modes and transmission properties of left-handed bandgap structures. Phys. Rev. E 70(4), 046615 (2004).

    Article  CAS  Google Scholar 

  • Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys.-Usp. 10(4), 509 (1968).

    Article  Google Scholar 

  • Wang, L., Chen, H., Zhu, S.-Y.: Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials. Phys. Rev. B 70(24), 245102 (2004).

    Article  CAS  Google Scholar 

  • Wu, L., He, S., Chen, L.: On unusual narrow transmission bands for a multi-layered periodic structure containing left-handed materials. Opt. Exp. 11(11), 1283 (2003a).

    Article  Google Scholar 

  • Wu, L., He, S., Shen, L.: Band structure for a one-dimensional photonic crystal containing left-handed materials. Phys. Rev. B 67(23), 235103 (2003b).

    Article  CAS  Google Scholar 

  • Yariv, A., and Yeh, P.: Optical waves in crystals. John Wiley & Sons, New York (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Cavalcanti, S.B., Reyes-Gómez, E., Bruno-Alfonso, A., Carvalho, C.A.A.d., Oliveira, L.E. (2010). On the Photonic Dispersion of Periodic Superlattices Made of Left-Handed Materials. In: Hall, T.J., Gaponenko, S.V., Paredes, S.A. (eds) Extreme Photonics & Applications. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3634-6_11

Download citation

Publish with us

Policies and ethics