Skip to main content

A Review of Recent Research Developments Into the Potential for Phytoextraction of Persistent Organic Pollutants (Pops) from Weathered, Contaminated Soil

  • Conference paper
Application of Phytotechnologies for Cleanup of Industrial, Agricultural, and Wastewater Contamination

Abstract

This chapter provides a summary of recent research exploring the potential of phytoextraction as a remediation strategy for soils contaminated with persistent organic pollutants (POPs). Evidence is first provided to show that plants in the species Cucurbita pepo ssp pepo (which includes zucchini and pumpkins) have the ability to mobilize significant concentrations of highly hydrophobic POPs from the soil and translocate them to their shoots, while many other plants do not. Current hypotheses regarding the mechanisms by which C. pepo ssp pepo plants achieve these high concentrations of POPs are then discussed. Next, a summary is given of research which has investigated use of soil amendments and other treatments to increase the efficiency of POPs phytoextraction by C. pepo ssp pepo and other plants. Finally, some of the impediments to the practical application of this technology are discussed and suggestions are made for future research to help make phytoextraction a feasible remediation strategy for POPs-contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowicz, D. A. 1990. Aerobic and anaerobic biodegradation of PCBs – A review. Crit. Rev. Biotechnol. 10:241–249.

    Article  CAS  Google Scholar 

  • Angle, J. S., A. J. M. Baker, S. N. Whiting, R. L. Chaney. 2003. Soil moisture effects on uptake of metals by Thlaspi, Alyssum, and Berkheya. Plant Soil 256:325–332.

    Article  CAS  Google Scholar 

  • Arthur, E. L., P. J. Rice, T. A. Anderson, S. M. Baladi, K. L. D. Henderson, J. R. Coats. 2005. Phytoremediation: An overview. Crit. Rev. Plant Sci. 24:109–122.

    Article  CAS  Google Scholar 

  • Bacci, E., C. Gaggi. 1985. Polychlorinated-biphenyls in plant foliage: Translocation or volatilization from contaminated soils. Bull. Environ. Contam. Toxicol. 35:673–681.

    Article  CAS  Google Scholar 

  • Baker, A. J. M., R. R. Brooks. 1989. Terrestrial higher plants which hyperaccumulate metallic elements: A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126.

    CAS  Google Scholar 

  • Baker, A. J. M., S. P. McGrath, C. M. D. Sidoli, R. D. Reeves. 1994. The possibility of in-situ heavy-metal decontamination of polluted soils using crops of metal-accumulating plants. Resour. Conserv. Recycl. 11:41–49.

    Article  Google Scholar 

  • Blaylock, M. J., D. E. Salt, S. Dushenkov, O. Zakharova, C. Gussman, Y. Kapulnik, B. Ensley, I. Raskin. 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol. 31:860–865.

    Article  Google Scholar 

  • Braendli, R. C., T. D. Bucheli, T. Kupper, J. Mayer, F. X. Stadelmann, J. Tarradellas. 2007. Fate of PCBs, PAHs and their source characteristic ratios during composting and digestion of source-separated organic waste in full-scale plants. Environ. Pollut. 148:520–528.

    Article  CAS  Google Scholar 

  • Branquinho, C., H. C. Serrano, M. J. Pinto, M. A. Martins-Loucao. 2007. Revisiting the plant hyperaccumulation criteria to rare plants and earth abundant elements. Environ. Pollut. 146:437–443.

    Article  CAS  Google Scholar 

  • Briggs, G. G., R. H. Bromilow, A. A. Evans, M. Williams. 1983. Relationships between lipophilicity and the distribution of non-ionized chemicals in barley shoots following uptake by the roots. Pesticide Sci. 14:492–500.

    Article  CAS  Google Scholar 

  • Buckley, E. H. 1982. Accumulation of airborne polychlorinated-biphenyls in foliage. Science 216:520–522.

    Article  CAS  Google Scholar 

  • Campanella, B. F. and R. Paul. 2000. Presence, in the rhizosphere and leaf extracts of zucchini (Cucurbita pepo L.) and melon (Cucumis melo L.), of molecules capable of increasing the apparent aqueous solubility of hydrophobic pollutants. Int. J. Phyto-remediation 2:145–158.

    CAS  Google Scholar 

  • Chaudhry, Q., P. Schroder, D. Werck-Reichhart, W. Grajek, R. Marecik. 2002. Prospects and limitations of phytoremediation for the removal of persistent pesticides in the environment. Environ. Sci. Pollut. Res. 9:4–17.

    Article  CAS  Google Scholar 

  • Collins, C., M. Fryer, A. Grosso. 2006. Plant uptake of non-ionic organic chemicals. Environ. Sci. Technol. 40:45–52.

    Article  CAS  Google Scholar 

  • Cousins, I. T., D. Mackay. 2001. Strategies for including vegetation compartments in multimedia models. Chemosphere 44:643–654.

    Article  CAS  Google Scholar 

  • Cunningham, S. D., D. W. Ow. 1996. Promises and prospects of phytoremediation. Plant Physiol. 110:715–719.

    CAS  Google Scholar 

  • Cunningham, S. D., W. R. Berti, J. W. Huang. 1995. Phytoremediation of contaminated soils. Trends Biotechnol. 13:393.

    Article  CAS  Google Scholar 

  • Dakora, F. D., D. A. Phillips. 2002. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47.

    Article  CAS  Google Scholar 

  • Dhankher, O. P., Y. Li, B. P. Rosen, J. Shi, D. Salt, J. F. Senecoff, N. A. Sashti, R. B. Meagher. 2002. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat. Biotechnol. 20:1140–1145.

    Article  CAS  Google Scholar 

  • doNascimento, C. W. A., B. S. Xing. 2006. Phytoextraction: A review on enhanced metal availability and plant accumulation. Sci. Agric. 63:299–311.

    Google Scholar 

  • Edwards, D. A., Z. Adeel, R. G. Luthy. 1994. Distribution of nonionic surfactant and phenanthrene in a sediment aqueous system. Environ. Sci. Technol. 28:1550–1560.

    Article  CAS  Google Scholar 

  • Fedorov, L. A. 1999. Persistent organic chemicals in the former Soviet Union. Environ. Pollut. 105:283–287.

    Article  CAS  Google Scholar 

  • Foy, C. D. 1984. Physiological effects of Hydrogen, Aluminium, and Manganese toxicities in acid soil, in: Soil Acidity and Liming. Adams, F. (Ed.), American Society of Agronomy, Madison, WI, pp. 57–97.

    Google Scholar 

  • Garbisu, C., I. Alkorta. 2001. Phytoextraction: A cost-effective plant-based technology for the removal of metals from the environment. Bioresour. Technol. 77:229–236.

    Article  CAS  Google Scholar 

  • Gent, M. P. N., Z. D. Parrish, J. C. White. 2005. Nutrient uptake among subspecies of Cucurbita pepo L. is related to exudation of citric acid. J. Am. Soc. Hort. Sci. 130:782–788.

    CAS  Google Scholar 

  • Gent, M. P. N., J. C. White, Z. D. Parrish, M. Isleyen, B. D. Eitzer, M. I. Mattina. 2007. Uptake and translocation of p,p′-dichlorodiphenyldichloroethylene supplied in hydroponics solution to Cucurbita. Environ. Toxicol. Chem. 26:2467–2475.

    Article  CAS  Google Scholar 

  • Godo, G. H., H. M. Reisenauer. 1980. Plant effects on soil manganese availability. Soil Sci. Soc. Am. J. 44:993.

    CAS  Google Scholar 

  • Huang, J., J. Chen, W. Berti, S. Cunningham. 1997. Phytoremediation of lead-contaminated soils: Role of synthetic chelates in lead phytoextraction. Environ. Sci. Technol. 31:800–805.

    Article  CAS  Google Scholar 

  • Huang, J., M. Blaylock, Y. Kapulnik, B. Ensley. 1998. Phytoremediation of uranium-contaminated soils: Role of organic acids in triggering uranium hyperaccumulation in plants. Environ. Sci. Technol. 32:2004–2008.

    Article  CAS  Google Scholar 

  • Hulster, A., H. Marschner, 1993. Transfer of PCDD/PCDF from contaminated soils to food and fodder crop plants. Chemosphere 27:439–446.

    Article  Google Scholar 

  • Hulster, A., H. Marschner. 1995. PCDD/PCDF: Complexing compounds in zucchini. Organohalogen Compd. 24:493–496.

    Google Scholar 

  • Hulster, A., J. F. Muller, H. Marschner. 1994. Soil-plant transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans to vegetables of the Cucumber family (Cucurbitaceae). Environ. Sci. Technol. 28:1110–1115.

    Article  Google Scholar 

  • Hutchinson, S. L., M. K. Banks, A. P. Schwab. 2001. Phytoremediation of aged petroleum sludge: Effect of inorganic fertilizer. J. Environ. Quality 30:395.

    Article  CAS  Google Scholar 

  • Kelsey, J. W., J. C. White. 2005. Multi-species interactions impact the accumulation of weathered 2,2-bis (p-chlorophenyl)-1,1-dichloroethylene (p′ p′-DDE) from soil. Environ. Pollut. 137:222–230.

    Article  CAS  Google Scholar 

  • Kelsey, J. W., A. Colino, M. Koberle, J. C. White. 2006. Growth conditions impact 2,2-bis (p-chlorophenyl)-1,1-dichloroethylene (p,p′-DDE) accumulation by Cucurbita pepo. Int. J. Phytoremediation 8:261–271.

    Article  CAS  Google Scholar 

  • Koopmans, G. F., P. F. A. M. Rümkens, J. Song, E. J. M. Temminghoff, J. Japenga. 2007. Predicting the phytoextraction duration to remediate heavy metal contaminated soils. Water Air Soil Pollut. 181:355–371.

    Article  CAS  Google Scholar 

  • Krishnamurti, G. S. R., G. Cieslinski, P. M. Huang, K. C. J. VanRees. 1997. Kinetics of cadmium release from soils as influenced by organic acids: Implication in cadmium availability. J. Environ. Qual. 26:271–277.

    Article  CAS  Google Scholar 

  • Kumar, P. B. A. N., V. Dushenkov, H. Motto, I. Raskin. 1995. Phytoextraction: The use of plants to remove heavy-metals from soils. Environ. Sci. Technol. 29:1232–1238.

    Article  CAS  Google Scholar 

  • Lasat, M. M., A. J. M. Baker, L. V. Kochian. 1996. Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi. Plant Physiol. 112:1715–1722.

    CAS  Google Scholar 

  • Lasat, M. M., M. Fuhrmann, S. D. Ebbs, J. E. Cornish, L. V. Kochian. 1998. Phytoremedi-ation of a radiocesium-contaminated soil: Evaluation of Cesium-137 bioaccumulation in the shoots of three plant species. J. Environ. Qual. 27:165–169.

    CAS  Google Scholar 

  • Lazzari, L., L. Sperni, M. Salizzato, B. Pavoni. 1999. Gas chromatographic determination of organic micropollutants in samples of sewage sludge and compost: Behaviour of PCB and PAH during composting. Chemosphere 38:1925–1935.

    Article  CAS  Google Scholar 

  • Li, Q. Q., A. Loganath, Y. S. Chong, J. Tan, J. P. Obbard. 2006. Persistent organic pollutants and adverse health effects in humans. J. Toxicol. Environ. Health — Part A — Curr. Issues 69:1987–2005.

    CAS  Google Scholar 

  • Lin, Q., Y. X. Chen, H. M. Chen, Y. L. Yu, Y. M. Luo, M. H. Wong. 2003. Chemical behavior of Cd in rice rhizosphere. Chemosphere 50:755–761.

    Article  CAS  Google Scholar 

  • Lombi, E., F. J. Zhao, S. P. McGrath, S. D. Young, G. A. Sacchi. 2001. Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytologists 149:53–60.

    Article  CAS  Google Scholar 

  • Lunney, A. I. 2007. Effect of surfactant and mycorrhizal soil amendments, and soil organic matter on plant uptake and potential for phytoremediation of DDT-contaminated soil. Unpublished thesis (M. Sc.) Royal Military College of Canada.

    Google Scholar 

  • Lunney, A. I., B. A. Zeeb, K. J. Reimer. 2004. Uptake of weathered DDT in vascular plants: Potential for phytoremediation. Environ. Sci. Technol. 38:6147–6154.

    Article  CAS  Google Scholar 

  • Luo, L., S. Z. Zhang, X. Q. Shan, Y. G. Zhu. 2006. Oxalate and root exudates enhance the desorption of p,p′-DDT from soils. Chemosphere 63:1273–1279.

    Article  CAS  Google Scholar 

  • Ma, L. 2001. A fern that hyperaccumulates arsenic — A hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature 409:579–579.

    Article  CAS  Google Scholar 

  • Macnair, M. R., V. Bert, S. B. Huitson, P. Saumitou-Laprade, D. Petit. 1999. Zinc tolerance and hyperaccumulation are genetically independent characters. Proc. Roy. Soc. Lond. Ser. B — Biol. Sci. 266:2175–2179.

    Article  CAS  Google Scholar 

  • Mattina, M. J. I., W. Iannucci-Berger, L. Dykas. 2000. Chlordane uptake and its translocation in food crops. J. Agric. Food Chem. 48:1909–1915.

    Article  CAS  Google Scholar 

  • Mattina, M. I., B. D. Eitzer, W. Iannucci-Berger, W. Y. Lee, J. C. White. 2004. Plant uptake and translocation of highly weathered, soil-bound technical chlordane residues: Data from field and rhizotron studies. Environ Toxicol Chem 23:2756–2762.

    Article  CAS  Google Scholar 

  • Mattina, M. I., W. A. Berger, B. D. Eitzer. 2007. Factors affecting the phytoaccumulation of weathered, soil-borne organic contaminants: Analyses at the ex Planta and in Planta sides of the plant root. Plant Soil 291:143–154.

    Article  CAS  Google Scholar 

  • McCrady, J. K., C. Mcfarlane, F. T. Lindstrom. 1987. The transport and affinity of substituted benzenes in soybean stems. J. Exp. Bot. 38:1875–1890.

    Article  CAS  Google Scholar 

  • McCrady, J. K., C. Mcfarlane, L. K. Gander. 1990. The transport and fate of 2,3,7,8-TCDD in soybean and corn. Chemosphere 21:359–376.

    Article  CAS  Google Scholar 

  • McCutcheon, S. C., J. L. Schnoor. (Eds.). 2003. Phytoremediation: Transformation and Control of Contaminants. Wiley, New York.

    Google Scholar 

  • McGrath, S., F. Zhao. 2003. Phytoextraction of metals and metalloids from contaminated soils. Curr. Opin. Biotechnol. 14:277.

    Article  CAS  Google Scholar 

  • Magher, R. B. 2000. Phytoremediation of toxic elemental and organic pollutants. Curr. Opin. Plant Biol. 3:153.

    Article  Google Scholar 

  • Mench, M., E. Martin. 1991. Mobilization of cadmium and other metals from 2 soils by root exudates of Zea mays L, Nicotiana tabacum L and Nicotiana rustica L. Plant Soil 132:187–196.

    CAS  Google Scholar 

  • Michel, F. C., J. Quensen, J., C. A. Reddy. 2001. Bioremediation of a PCB-contaminated soil via composting. Compost Sci. Util. 9:274–284.

    Google Scholar 

  • Muller, J. F., A. Hulster, O. Papke, M. Ball, H. Marschner. 1993. Transfer pathways of PCDD/PCDF to fruits. Chemosphere 27:195–201.

    Article  Google Scholar 

  • Northcott, G. L. and K. C. Jones. 2000. Experimental approaches and analytical techniques for determining organic compound bound residues in soil and sediment. Environ. Pollut. 108:19–43.

    Article  CAS  Google Scholar 

  • Otani, T. and N. Seike. 2006. Comparative effects of rootstock and scion on dieldrin and endrin uptake by grafted cucumber (Cucumis sativus). J. Pestic. Sci. 31:316–321.

    Article  CAS  Google Scholar 

  • Otani, T. and N. Seike. 2007. Rootstock control of fruit dieldrin concentration in grafted cucumber (Cucumis sativus). J. Pestic. Sci. 32:235–242.

    Article  CAS  Google Scholar 

  • Otani, T., N. Seike, Y. Sakata. 2007. Differential uptake of dieldrin and endrin from soil by several plant families and Cucurbita genera. Soil Sci. Plant Nutr. 53:86.

    Article  CAS  Google Scholar 

  • Park, J. W., S. A. Boyd. 1999. Sorption of chlorobiphenyls in sediment-water systems containing nonionic surfactants. J. Environ. Qual. 28:945–952.

    Article  CAS  Google Scholar 

  • Pilon-Smits, E. A. H., J. L. Freeman. 2006. Environmental cleanup using plants: Bio-technological advances and ecological considerations. Front. Ecol. Environ. 4:203–210.

    Article  Google Scholar 

  • Raskin, I., B. D. Ensley (Eds.). 2000. Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment. Wiley, New York.

    Google Scholar 

  • Richardson, P. T., D. A. Baker, L. C. Ho. 1982. The chemical-composition of Cucurbit vascular exudates. J. Exp. Bot. 33:1239.

    Article  CAS  Google Scholar 

  • Riederer, M. 1990. Estimating partitioning and transport of organic-chemicals in the foliage atmosphere system — discussion of a fugacity-based model. Environ. Sci. Technol. 24:829–837.

    Article  CAS  Google Scholar 

  • Robinson, B. H., M. Leblanc, D. Petit, R. R. Brooks, J. H. Kirkham, P. E. H. Gregg. 1998. The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203:47–56.

    Article  CAS  Google Scholar 

  • Roch, F., M. Alexander. 1995. Biodegradation of hydrophobic compounds in the presence of surfactants. Environ. Toxicol. Chem. 14:1151–1158.

    Article  CAS  Google Scholar 

  • Ryan, J. A., R. M. Bell, J. M. Davidson, G. A. O'Connor. 1988. Plant uptake of non-ionic organic-chemicals from soils. Chemosphere 17:2299–2323.

    Article  CAS  Google Scholar 

  • Salt, D. E., R. C. Prince, I. J. Pickering, I. Raskin. 1995a. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol. 109:1427–1433.

    CAS  Google Scholar 

  • Salt, D. E., M. Blaylock, N. P. B. A. Kumar, V. Dushenkov, B. D. Ensley, I. Chet, I. Raskin. 1995b. Phytoremediation — A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474.

    Article  CAS  Google Scholar 

  • Salt, D. E., R. D. Smith, I. Raskin. 1998. Phytoremediation. Ann. Rev. Plant Physiol. Plant Mol. Biol. 49:643–668.

    Article  CAS  Google Scholar 

  • Sas-Nowosielska, A., R. Kucharski, E. Malkowski, M. Pogrzeba, J. M. Kuperberg, K. Krynski. 2004. Phytoextraction crop disposal – an unsolved problem. Environ. Pollut. 128:373–379.

    Article  CAS  Google Scholar 

  • Semple, K. T., B. J. Reid, T. R. Fermor. 2001. Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ. Pollut. 112:269–283.

    Article  CAS  Google Scholar 

  • Smith, S. E., D. J. Read. 1997. Mycorrhizal Symbiosis. 2nd edn. Academic, London.

    Google Scholar 

  • Suzuki, M., N. Aizawa, G. Okano, T. Takahashi. 1977. Translocation of polychlorobiphenyls in soil into plants — study by a method of culture of soybean sprouts. Arch. Environ. Contam. Toxicol. 5:343–352.

    Article  CAS  Google Scholar 

  • Tennant, T., L. Wu. 2000. Effects of water stress on selenium accumulation in tail fescue (Festuca arundinacea Schreb) from a selenium-contaminated soil. Arch. Environ. Contam. Toxicol. 38:32–39.

    Article  CAS  Google Scholar 

  • Tiehm, A. 1994. Degradation of polycyclic aromatic-hydrocarbons in the presence of synthetic surfactants. Appl. Environ. Microbiol. 60:258–263.

    CAS  Google Scholar 

  • Vancura, V., A. Hovadik. 1965. Root exudates of plants. IV. Composition of root exudates of some vegetables. Plant Soil 22:21–32.

    CAS  Google Scholar 

  • Wang, X. P., J. C. White, M. P. N. Gent, W. Iannucci-Berger, B. D. Eitzer, M. J. I. Mattina. 2004. Phytoextraction of weathered p(,)p′-DDE by zucchini (Cucurbita pepo) and cucumber (Cucumis sativus) under different cultivation conditions. Int. J. Phytoremediation 6:363–385.

    Article  CAS  Google Scholar 

  • Wenzel, W. W., R. Unterbrunner, P. Sommer, P. Sacco. 2003. Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoor pot and field-lysimeter experiments. Abstracts Papers American Chemical Society 226:U476–U476.

    Google Scholar 

  • White, J. C. 2000. Phytoremediation of weathered p,p′-DDE residues in soil. Int. J. Phytoremediation 2:133–144.

    Article  CAS  Google Scholar 

  • White, J. C. 2001. Plant-facilitated mobilization and translocation of weathered 2,2-bis (p-chlorophenyl)-1,1-dichloroethylene (p,p′-DDE) from an agricultural soil. Environ. Toxicol. Chem. 20:2047–2052.

    Article  CAS  Google Scholar 

  • White, J. C. 2002. Differential bioavailability of field-weathered p,p′-DDE to plants of the Cucurbita and Cucumis genera. Chemosphere 49:143–152.

    Article  CAS  Google Scholar 

  • White, J. C., B. D. Kottler. 2002. Citrate-mediated increase in the uptake of weathered 2, 2-bis(p-chlorophenyl)1,1-dichloroethylene residues by plants. Environ. Toxicol. Chem. 21:550–556.

    Article  CAS  Google Scholar 

  • White, J. C., X. P. Wang, M. P. N. Gent, W. Iannucci-Berger, B. D. Eitzer, N. P. Schultes, M. Arienzo, M. I. Mattina. 2003a. Subspecies-level variation in the phytoextraction of weathered p,p′-DDE by Cucurbita pepo. Environ. Sci. Technol. 37:4368–4373.

    Article  CAS  Google Scholar 

  • White, J. C., M. I. Mattina, W. Y. Lee, B. D. Eitzer, W. Iannucci-Berger. 2003b. Role of organic acids in enhancing the desorption and uptake of weathered p,p′-DDE by Cucurbita pepo. Environ. Pollut. 124:71–80.

    Article  CAS  Google Scholar 

  • White, P. M., D. C. Wolf, G. J. Thoma, C. M. Reynolds. 2003c. Influence of organic and inorganic soil amendments on plant growth in crude oil-contaminated soil. Int. J. Phytoremediation 5:381.

    CAS  Google Scholar 

  • White, J. C., Z. D. Parrish, M. Isleyen, M. P. N. Gent, W. Iannucci-Berger, B. D. Eitzer, M. J. I. Mattina. 2005a. Uptake of weathered p,p′-DDE by plant species effective at accumulating soil elements. Microchem J 81:148–155.

    Article  CAS  Google Scholar 

  • White, J. C., Z. D. Parrish, M. Isleyen, M. P. N. Gent, W. Iannucci-Berger, B. D. Eitzer, M. I. Mattina. 2005b. Influence of nutrient amendments on the phytoextraction of weathered 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene by cucurbits. Environ. Toxicol. Chem. 24:987–994.

    Article  CAS  Google Scholar 

  • White, J. C., Z. D. Parrish, M. Isleyen, M. P. N. Gent, W. Iannucci-Berger, B. D. Eitzer, J. W. Kelsey, M. I. Mattina. 2006a. Influence of citric acid amendments on the availability of weathered PCBs to plant and earthworm species. Int. J. Phytoremediation 8:63–79.

    Article  CAS  Google Scholar 

  • White, J. C., Z. D. Parrish, M. P. N. Gent, W. Iannucci-Berger, B. D. Eitzer, M. Isleyen, M. I. Mattina. 2006b. Soil amendments, plant age, and intercropping impact p,p′-DDE bioavailability to Cucurbita pepo. J. Environ. Qual. 35:992–1000.

    Article  CAS  Google Scholar 

  • White, J. C., D. W. Ross, M. P. N. Gent, B. D. Eitzer, M. I. Mattina. 2006c. Effect of mycorrhizal fungi on the phytoextraction of weathered p,p-DDE by Cucurbita pepo. J. Hazard. Mater. 137:1750–1757.

    Article  CAS  Google Scholar 

  • Whitfield Åslund, M. L. 2008. Transfer of polychlorinated biphenyls (PCBs) from contaminated soil to key plant species in realistic field conditions. Unpublished thesis (Ph.D.). Royal Military College of Canada.

    Google Scholar 

  • Whitfield Åslund, M. L., B. A. Zeeb, A. Rutter, K. J. Reimer. 2007. In situ phytoextraction of polychlorinated biphenyl – (PCB) contaminated soil. Sci. Total Environ. 374:1–12.

    Article  CAS  Google Scholar 

  • Whitfield Åslund, M. L., A. Rutter, K. J. Reimer, B. A. Zeeb. 2008. The effects of repeated planting, planting density, and specific transfer pathways on PCB uptake by Cucurbita pepo grown in field conditions. Sci. Total Environ. 405:14–25.

    Article  CAS  Google Scholar 

  • Yang, X. E., H. Y. Peng, L. Y. Jiang. 2005. Phytoextraction of copper from contaminated soil by Elsholtzia splendens as affected by EDTA, citric acid, and compost. Int. J. Phytoremediation 7:69–83.

    Article  CAS  Google Scholar 

  • Ye, Q. P., R. K. Puri, S. Kapila, A. F. Yanders. 1992. Studies on the transport and transformation of PCBs in plants. Chemosphere 25:1475–1479.

    Article  CAS  Google Scholar 

  • Zeeb, B. A., J. S. Amphlett, A. Rutter, K. J. Reimer. 2006. Potential for phytoremediation of polychlorinated biphenyl-(PCB-)contaminated soil. Int. J. Phytoremediation 8:199–221.

    Article  CAS  Google Scholar 

  • Zhao, F. J., E. Lombi, S. P. McGrath. 2003. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249:37.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Åslund, M.W., Zeeb, B.A. (2010). A Review of Recent Research Developments Into the Potential for Phytoextraction of Persistent Organic Pollutants (Pops) from Weathered, Contaminated Soil. In: Kulakow, P.A., Pidlisnyuk, V.V. (eds) Application of Phytotechnologies for Cleanup of Industrial, Agricultural, and Wastewater Contamination. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3592-9_4

Download citation

Publish with us

Policies and ethics