Skip to main content

ω-3 PUFAs, Breast and Prostate Cancer: Experimental Studies

  • Chapter
  • First Online:

Part of the book series: Diet and Cancer ((DICA,volume 1))

Abstract

Although human epidemiological and clinical studies to date have failed to provide conclusive data on a protective effect of ω-3 polyunsaturated fatty acids (PUFAs) on breast and prostate cancer, cell culture and animal studies present a more positive story. Experimental models investigated include various human cancer cell lines, rats with chemically induced tumors, mice with transplantable and human xenograft tumors, and, more recently, transgenic models. They have suggested a number of biological targets for ω-3 PUFAs that impact cell proliferation, survival, apoptosis, angiogenesis, invasiveness, and metastasis, i.e., ω-3 PUFAs may have multifactorial properties in preventing and inhibiting cancer. These models have uncovered numerous mechanisms for the anti-cancer activity of ω-3 PUFAs with the most frequently cited being their ability to block the metabolism of ω-6 PUFAs into agents that promote many facets of the malignant behavior of cancer cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ALA:

α-linolenic acid

AA:

arachidonic acid

COX:

cyclooxygenase

cPLA2 :

cytosolic phospholipase A2

DHA:

docosahexaenoic acid

DMBA:

dimethylbenz(a)anthracene

EPA:

eicosapentaenoic acid

ELOVL:

elongase

HER2:

human epidermal growth factor receptor 2

LA:

linoleic acid

LDL:

low-density lipoproteins

LOX:

lipoxygenase

PSA:

prostate-specific antigen

PTEN:

phosphatase and tensin homolog deleted onchromosome 10

PUFA:

polyunsaturated fatty acid

RBC:

red blood cells

SNIP:

single-nucleotide polymorphism

VEGF:

vascular endothelial growth factor

References

  1. Sprecher H. Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim Biophys Acta 2000; 1486:219–31.

    CAS  PubMed  Google Scholar 

  2. Kris-Etherton PM, Taylor DS, Yu-Poth S, et al. Polyunsaturated fatty acids in the food chain in the United States. Am J Clin Nutr 2000; 71:179S–88S.

    CAS  PubMed  Google Scholar 

  3. Reddy BS, Cohen LA, McCoy GD, Hill P, Weisburger JH, Wynder EL. Nutrition and its relationship to cancer. Adv Cancer Res 1980; 32:237–345.

    Article  CAS  PubMed  Google Scholar 

  4. Jurkowski JJ, Cave WT, Jr. Dietary effects of menhaden oil on the growth and membrane lipid composition of rat mammary tumors. J Natl Cancer Inst 1985; 74:1145–50.

    CAS  PubMed  Google Scholar 

  5. Braden LM, Carroll KK. Dietary polyunsaturated fat in relation to mammary carcinogenesis in rats. Lipids 1986; 21:285–8.

    Article  CAS  PubMed  Google Scholar 

  6. Abou-el-Ela SH, Prasse KW, Carroll R, Wade AE, Dharwadkar S, Bunce OR. Eicosanoid synthesis in 7,12-dimethylbenz(a)anthracene-induced mammary carcinomas in Sprague-Dawley rats fed primrose oil, menhaden oil or corn oil diet. Lipids 1988; 23: 948–54.

    Article  CAS  PubMed  Google Scholar 

  7. Abou-el-Ela SH, Prasse KW, Farrell RL, Carroll RW, Wade AE, Bunce OR. Effects of D,L-2-difluoromethylornithine and indomethacin on mammary tumor promotion in rats fed high n–3 and/or n–6 fat diets. Cancer Res 1989; 49:1434–40.

    CAS  PubMed  Google Scholar 

  8. Rose DP, Hatala MA, Connolly JM, Rayburn J. Effect of diets containing different levels of linoleic acid on human breast cancer growth and lung metastasis in nude mice. Cancer Res 1993; 53:4686–90.

    CAS  PubMed  Google Scholar 

  9. Rose DP, Connolly JM. Effects of dietary omega-3 fatty acids on human breast cancer growth and metastases in nude mice. J Natl Cancer Inst 1993; 85:1743–7.

    Article  CAS  PubMed  Google Scholar 

  10. Rose DP, Connolly JM, Rayburn J, Coleman M. Influence of diets containing eicosapentaenoic or docosahexaenoic acid on growth and metastasis of breast cancer cells in nude mice. J Natl Cancer Inst 1995; 87:587–92.

    Article  CAS  PubMed  Google Scholar 

  11. Karmali RA, Marsh J, Fuchs C. Effect of omega-3 fatty acids on growth of a rat mammary tumor. J Natl Cancer Inst 1984; 73:457–61.

    CAS  PubMed  Google Scholar 

  12. Gabor H, Hillyard LA, Abraham S. Effect of dietary fat on growth kinetics of transplantable mammary adenocarcinoma in BALB/c mice. J Natl Cancer Inst 1985; 74:1299–305.

    CAS  PubMed  Google Scholar 

  13. Shao Y, Pardini L, Pardini RS. Dietary menhaden oil enhances mitomycin C antitumor activity toward human mammary carcinoma MX-1. Lipids 1995; 30:1035–45.

    Article  CAS  PubMed  Google Scholar 

  14. Rose DP, Connolly JM, Coleman M. Effect of omega-3 fatty acids on the progression of metastases after the surgical excision of human breast cancer cell solid tumors growing in nude mice. Clin Cancer Res 1996; 2:1751–6.

    CAS  PubMed  Google Scholar 

  15. Chen J, Stavro PM, Thompson LU. Dietary flaxseed inhibits human breast cancer growth and metastasis and downregulates expression of insulin-like growth factor and epidermal growth factor receptor. Nutr Cancer 2002; 43:187–92.

    Article  CAS  PubMed  Google Scholar 

  16. Riediger ND, Othman RA, Suh M, Moghadasian MH. A systemic review of the roles of n-3 fatty acids in health and disease. J Am Diet Assoc 2009; 109:668–79.

    Article  CAS  PubMed  Google Scholar 

  17. Giovanella BC, Fogh J. The nude mouse in cancer research. Adv Cancer Res 1985; 44: 69–120.

    Article  CAS  PubMed  Google Scholar 

  18. Erickson KL, Schumacher LA. Lack of an influence of dietary fat on murine natural killer cell activity. J Nutr 1989; 119:1311–7.

    CAS  PubMed  Google Scholar 

  19. Welsch CW, Oakley CS, Chang CC, Welsch MA. Suppression of growth by dietary fish oil of human breast carcinomas maintained in three different strains of immune-deficient mice. Nutr Cancer 1993; 20:119–27.

    Article  CAS  PubMed  Google Scholar 

  20. Noguchi M, Minami M, Yagasaki R, et al. Chemoprevention of DMBA-induced mammary carcinogenesis in rats by low-dose EPA and DHA. Br J Cancer 1997; 75:348–53.

    CAS  PubMed  Google Scholar 

  21. Gooch JL, Yee D. Strain-specific differences in formation of apoptotic DNA ladders in MCF-7 breast cancer cells. Cancer Lett 1999; 144:31–7.

    Article  CAS  PubMed  Google Scholar 

  22. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235:177–82.

    Article  CAS  PubMed  Google Scholar 

  23. Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 1992; 89:10578–82.

    Article  CAS  PubMed  Google Scholar 

  24. Luijten M, Verhoef A, Dormans JA, et al. Modulation of mammary tumor development in Tg.NK (MMTV/c-neu) mice by dietary fatty acids and life stage-specific exposure to phytoestrogens. Reprod Toxicol 2007; 23:407–13.

    Article  CAS  PubMed  Google Scholar 

  25. Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 1988; 54:105–15.

    Article  CAS  PubMed  Google Scholar 

  26. Yee LD, Young DC, Rosol TJ, Vanbuskirk AM, Clinton SK. Dietary (n–3) polyunsaturated fatty acids inhibit HER-2/neu-induced breast cancer in mice independently of the PPARgamma ligand rosiglitazone. J Nutr 2005; 135:983–8.

    CAS  PubMed  Google Scholar 

  27. Karmali RA, Reichel P, Cohen LA, et al. The effects of dietary omega-3 fatty acids on the DU-145 transplantable human prostatic tumor. Anticancer Res 1987; 7:1173–9.

    CAS  PubMed  Google Scholar 

  28. Rose DP, Cohen LA. Effects of dietary menhaden oil and retinyl acetate on the growth of DU 145 human prostatic adenocarcinoma cells transplanted into athymic nude mice. Carcinogenesis 1988; 9:603–5.

    Article  CAS  PubMed  Google Scholar 

  29. Rose DP. Effects of dietary fatty acids on breast and prostate cancers: evidence from in vitro experiments and animal studies. Am J Clin Nutr 1997; 66:1513S–22S.

    CAS  PubMed  Google Scholar 

  30. Kobayashi N, Barnard RJ, Henning SM, et al. Effect of altering dietary omega-6/omega-3 fatty acid ratios on prostate cancer membrane composition, cyclooxygenase-2, and prostaglandin E2. Clin Cancer Res 2006; 12:4662–70.

    Article  CAS  PubMed  Google Scholar 

  31. Kelavkar UP, Hutzley J, Dhir R, Kim P, Allen KG, McHugh K. Prostate tumor growth and recurrence can be modulated by the omega-6:omega-3 ratio in diet: athymic mouse xenograft model simulating radical prostatectomy. Neoplasia 2006; 8:112–24.

    Article  CAS  PubMed  Google Scholar 

  32. McEntee MF, Ziegler C, Reel D, et al. Dietary n-3 polyunsaturated fatty acids enhance hormone ablation therapy in androgen-dependent prostate cancer. Am J Pathol 2008; 173:229–41.

    Article  CAS  PubMed  Google Scholar 

  33. Dahia PL. PTEN, a unique tumor suppressor gene. Endocr Relat Cancer 2000; 7:115–29.

    Article  CAS  PubMed  Google Scholar 

  34. Suzuki H, Freije D, Nusskern DR, et al. Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res 1998; 58: 204–9.

    CAS  PubMed  Google Scholar 

  35. Wang S, Gao J, Lei Q, et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 2003; 4:209–21.

    Article  CAS  PubMed  Google Scholar 

  36. Berquin IM, Min Y, Wu R, et al. Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids. J Clin Invest 2007; 117:1866–75.

    Article  CAS  PubMed  Google Scholar 

  37. Kang JX, Wang J, Wu L, Kang ZB. Transgenic mice: fat-1 mice convert n-6 to n-3 fatty acids. Nature 2004; 427:504.

    Article  CAS  PubMed  Google Scholar 

  38. Lu Y, Nie D, Witt WT, et al. Expression of the fat-1 gene diminishes prostate cancer growth in vivo through enhancing apoptosis and inhibiting GSK-3 beta phosphorylation. Mol Cancer Ther 2008; 7:3203–11.

    Article  CAS  PubMed  Google Scholar 

  39. Berquin IM, Edwards IJ, Chen YQ. Multi-targeted therapy of cancer by omega-3 fatty acids. Cancer Lett 2008; 269:363–77.

    Article  CAS  PubMed  Google Scholar 

  40. Larsson SC, Kumlin M, Ingelman-Sundberg M, Wolk A. Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. Am J Clin Nutr 2004; 79:935–45.

    CAS  PubMed  Google Scholar 

  41. Welsch CW. Review of the effects of dietary fat on experimental mammary gland tumorigenesis: role of lipid peroxidation. Free Radic Biol Med 1995; 18:757–73.

    Article  CAS  PubMed  Google Scholar 

  42. Gonzalez MJ, Schemmel RA, Dugan L, Jr., Gray JI, Welsch CW. Dietary fish oil inhibits human breast carcinoma growth: a function of increased lipid peroxidation. Lipids 1993; 28:827–32.

    Article  CAS  PubMed  Google Scholar 

  43. Mueller E, Sarraf P, Tontonoz P, et al. Terminal differentiation of human breast cancer through PPAR gamma. Mol Cell 1998; 1:465–70.

    Article  CAS  PubMed  Google Scholar 

  44. Pighetti GM, Novosad W, Nicholson C, et al. Therapeutic treatment of DMBA-induced mammary tumors with PPAR ligands. Anticancer Res 2001; 21:825–9.

    CAS  PubMed  Google Scholar 

  45. Suh N, Wang Y, Williams CR, et al. A new ligand for the peroxisome proliferator-activated receptor-gamma (PPAR-gamma), GW7845, inhibits rat mammary carcinogenesis. Cancer Res 1999; 59:5671–3.

    CAS  PubMed  Google Scholar 

  46. Yin Y, Russell RG, Dettin LE, et al. Peroxisome proliferator-activated receptor delta and gamma agonists differentially alter tumor differentiation and progression during mammary carcinogenesis. Cancer Res 2005; 65:3950–7.

    Article  CAS  PubMed  Google Scholar 

  47. Gani OA, Sylte I. Ligand-induced stabilization and activation of peroxisome proliferator-activated receptor gamma. Chem Biol Drug Des 2008; 72:50–7.

    Article  CAS  PubMed  Google Scholar 

  48. Itoh T, Yamamoto K.Peroxisome proliferator activated receptor gamma and oxidized docosahexaenoic acids as new class of ligand. Naunyn Schmiedebergs Arch Pharmacol 2008; 377:541–7.

    Google Scholar 

  49. Edwards IJ, Berquin IM, Sun H, et al. Differential effects of delivery of omega-3 fatty acids to human cancer cells by low-density lipoproteins versus albumin. Clin Cancer Res 2004; 10:8275–83.

    Article  CAS  PubMed  Google Scholar 

  50. Sun H, Berquin IM, Owens RT, O‘Flaherty JT, Edwards IJ. Peroxisome proliferator-activated receptor gamma-mediated up-regulation of syndecan-1 by n-3 fatty acids promotes apoptosis of human breast cancer cells. Cancer Res 2008; 68:2912–9.

    Article  CAS  PubMed  Google Scholar 

  51. Sun H, Berquin IM, Edwards IJ. Omega-3 polyunsaturated fatty acids regulate syndecan-1 expression in human breast cancer cells. Cancer Res 2005; 65:4442–7.

    Article  CAS  PubMed  Google Scholar 

  52. Edwards IJ, Sun H, Hu Y,et al. In vivo and in vitro regulation of syndecan 1 in prostate cells by N-3 polyunsaturated fatty acids. J Biol Chem 2008; 283:18441–49.

    Article  CAS  PubMed  Google Scholar 

  53. Noguchi M, Earashi M, Minami M, Kinoshita K, Miyazaki I. Effects of eicosapentaenoic and docosahexaenoic acid on cell growth and prostaglandin E and leukotriene B production by a human breast cancer cell line (MDA-MB-231). Oncology 1995; 52:458–64.

    Article  CAS  PubMed  Google Scholar 

  54. Shikano M, Masuzawa Y, Yazawa K, Takayama K, Kudo I, Inoue K. Complete discrimination of docosahexaenoate from arachidonate by 85 kDa cytosolic phospholipase A2 during the hydrolysis of diacyl- and alkenylacylglycerophosphoethanolamine. Biochim Biophys Acta 1994; 1212:211–6.

    CAS  PubMed  Google Scholar 

  55. Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med (Maywood) 2008; 233:674–88.

    Article  CAS  Google Scholar 

  56. Rose DP, Connolly JM. Omega-3 fatty acids as cancer chemopreventive agents. Pharmacol Ther 1999; 83:217–44.

    Article  CAS  PubMed  Google Scholar 

  57. Rose DP, Connolly JM. Effects of fatty acids and inhibitors of eicosanoid synthesis on the growth of a human breast cancer cell line in culture. Cancer Res 1990; 50:7139–44.

    CAS  PubMed  Google Scholar 

  58. Brown MD, Hart CA, Gazi E, Bagley S, Clarke NW. Promotion of prostatic metastatic migration towards human bone marrow stoma by Omega 6 and its inhibition by Omega 3 PUFAs. Br J Cancer 2006; 94:842–53.

    Article  CAS  PubMed  Google Scholar 

  59. McCarty MF. Fish oil may impede tumour angiogenesis and invasiveness by down-regulating protein kinase C and modulating eicosanoid production. Med Hypotheses 1996; 46:107–15.

    Article  CAS  PubMed  Google Scholar 

  60. Rose DP, Connolly JM. Regulation of tumor angiogenesis by dietary fatty acids and eicosanoids. Nutr Cancer 2000; 37:119–27.

    Article  CAS  PubMed  Google Scholar 

  61. Caughey GE, Mantzioris E, Gibson RA, Cleland LG, James MJ. The effect on human tumor necrosis factor alpha and interleukin 1 beta production of diets enriched in n–3 fatty acids from vegetable oil or fish oil. Am J Clin Nutr 1996; 63:116–22.

    CAS  PubMed  Google Scholar 

  62. Sperling RI, Benincaso AI, Knoell CT, Larkin JK, Austen KF, Robinson DR. Dietary omega-3 polyunsaturated fatty acids inhibit phosphoinositide formation and chemotaxis in neutrophils. J Clin Invest 1993; 91:651–60.

    Article  CAS  PubMed  Google Scholar 

  63. Needleman P, Raz A, Minkes MS, Ferrendelli JA, Sprecher H. Triene prostaglandins: prostacyclin and thromboxane biosynthesis and unique biological properties. Proc Natl Acad Sci USA 1979; 76:944–8.

    Article  CAS  PubMed  Google Scholar 

  64. Serhan CN, Gotlinger K, Hong S, Arita M. Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their aspirin-triggered endogenous epimers: an overview of their protective roles in catabasis. Prostaglandins Other Lipid Mediat 2004; 73:155–72.

    Article  CAS  PubMed  Google Scholar 

  65. Serhan CN, Chiang N. Endogenous pro-resolving and anti-inflammatory lipid mediators: a new pharmacologic genus. Br J Pharmacol 2008; 153(Suppl 1):S200–15.

    Article  CAS  Google Scholar 

  66. Cuendet M, Pezzuto JM. The role of cyclooxygenase and lipoxygenase in cancer chemoprevention. Drug Metabol Drug Interact 2000; 17:109–57.

    CAS  PubMed  Google Scholar 

  67. Furstenberger G, Krieg P, Muller-Decker K, Habenicht AJ. What are cyclooxygenases and lipoxygenases doing in the driver’s seat of carcinogenesis? Int J Cancer 2006; 119:2247–54.

    Article  CAS  PubMed  Google Scholar 

  68. Shureiqi I, Lippman SM. Lipoxygenase modulation to reverse carcinogenesis. Cancer Res 2001; 61:6307–12.

    CAS  PubMed  Google Scholar 

  69. Steele VE, Holmes CA, Hawk ET, et al. Lipoxygenase inhibitors as potential cancer chemopreventives. Cancer Epidemiol Biomarkers Prev 1999; 8:467–83.

    CAS  PubMed  Google Scholar 

  70. You J, Mi D, Zhou X, et al. A Positive Feedback between Activated ERK and COX/LOX Maintains Proliferation and Migration of Breast Cancer Cells. Endocrinology 2009; 150:1607–17.

    Google Scholar 

  71. Howe LR. Inflammation and breast cancer. Cyclooxygenase/prostaglandin signaling and breast cancer. Breast Cancer Res 2007; 9:210.

    Article  PubMed  CAS  Google Scholar 

  72. Singh-Ranger G, Salhab M, Mokbel K. The role of cyclooxygenase-2 in breast cancer: review. Breast Cancer Res Treat 2008; 109:189–98.

    Article  CAS  PubMed  Google Scholar 

  73. Takkouche B, Regueira-Mendez C, Etminan M. Breast cancer and use of nonsteroidal anti-inflammatory drugs: a meta-analysis. J Natl Cancer Inst 2008; 100:1439–47.

    Article  CAS  PubMed  Google Scholar 

  74. O‘Flaherty JT, Taylor JS, Thomas MJ. Receptors for the 5-oxo class of eicosanoids in neutrophils. J Biol Chem 1998; 273:32535–41.

    Article  PubMed  Google Scholar 

  75. Avis I, Hong SH, Martinez A, et al. Five-lipoxygenase inhibitors can mediate apoptosis in human breast cancer cell lines through complex eicosanoid interactions. Faseb J 2001; 15:2007–9.

    CAS  PubMed  Google Scholar 

  76. Hammamieh R, Sumaida D, Zhang X, Das R, Jett M. Control of the growth of human breast cancer cells in culture by manipulation of arachidonate metabolism. BMC Cancer 2007; 7:138.

    Article  PubMed  CAS  Google Scholar 

  77. Kim JH, Hubbard NE, Ziboh V, Erickson KL. Conjugated linoleic acid reduction of murine mammary tumor cell growth through 5-hydroxyeicosatetraenoic acid. Biochim Biophys Acta 2005; 1687:103–9.

    CAS  PubMed  Google Scholar 

  78. O’Flaherty JT, Rogers LC, Paumi CM, et al. 5-Oxo-ETE analogs and the proliferation of cancer cells. Biochim Biophys Acta 2005; 1736:228–36.

    PubMed  Google Scholar 

  79. Tong WG, Ding XZ, Adrian TE. The mechanisms of lipoxygenase inhibitor-induced apoptosis in human breast cancer cells. Biochem Biophys Res Comm 2002; 296:942–8.

    Article  CAS  PubMed  Google Scholar 

  80. Jiang WG, Douglas-Jones A, Mansel RE. Levels of expression of lipoxygenases and cyclooxygenase-2 in human breast cancer. Prostaglandins Leukot Essent Fatty Acids 2003; 69:275–81.

    Article  CAS  PubMed  Google Scholar 

  81. Jiang WG, Douglas-Jones AG, Mansel RE. Aberrant expression of 5-lipoxygenase-activating protein (5-LOXAP) has prognostic and survival significance in patients with breast cancer. Prostaglandins Leukot Essent Fatty Acids 2006; 74:125–34.

    Article  CAS  PubMed  Google Scholar 

  82. Liu XH, Connolly JM, Rose DP. The 12-lipoxygenase gene-transfected MCF-7 human breast cancer cell line exhibits estrogen-independent, but estrogen and omega-6 fatty acid-stimulated proliferation in vitro, and enhanced growth in athymic nude mice. Cancer Lett 1996; 109:223–30.

    Article  CAS  PubMed  Google Scholar 

  83. Natarajan R, Nadler J. Role of lipoxygenases in breast cancer. Front Biosci 1998; 3:E81–8.

    Google Scholar 

  84. Najid A, Beneytout JL, Tixier M. Cytotoxicity of arachidonic acid and of its lipoxygenase metabolite 15-hydroperoxyeicosatetraenoic acid on human breast cancer MCF-7 cells in culture. Cancer Lett 1989; 46:137–41.

    Article  CAS  PubMed  Google Scholar 

  85. Jiang WG, Watkins G, Douglas-Jones A, Mansel RE. Reduction of isoforms of 15-lipoxygenase (15-LOX)-1 and 15-LOX-2 in human breast cancer. Prostaglandins Leukot Essent Fatty Acids 2006; 74:235–45.

    Article  CAS  PubMed  Google Scholar 

  86. Nony PA, Kennett SB, Glasgow WC, Olden K, Roberts JD. 15S-Lipoxygenase-2 mediates arachidonic acid-stimulated adhesion of human breast carcinoma cells through the activation of TAK1, MKK6, and p38 MAPK. J Biol Chem 2005; 280:31413–9.

    Article  CAS  PubMed  Google Scholar 

  87. Reddy N, Everhart A, Eling T, Glasgow W. Characterization of a 15-lipoxygenase in human breast carcinoma BT-20 cells: stimulation of 13-HODE formation by TGF alpha/EGF. Biochem Biophys Res Comm 1997; 231:111–6.

    Article  CAS  PubMed  Google Scholar 

  88. Pasqualini ME, Heyd VL, Manzo P, Eynard AR. Association between E-cadherin expression by human colon, bladder and breast cancer cells and the 13-HODE:15-HETE ratio. A possible role of their metastatic potential. Prostaglandins Leukot Essent Fatty Acids 2003; 68:9–16.

    Article  CAS  PubMed  Google Scholar 

  89. Ghosh J, Myers CE. Arachidonic acid stimulates prostate cancer cell growth: critical role of 5-lipoxygenase. Biochem Biophys Res Comm 1997; 235:418–23.

    Article  CAS  PubMed  Google Scholar 

  90. Moretti RM, Montagnani Marelli M, Sala A, Motta M, Limonta P. Activation of the orphan nuclear receptor RORalpha counteracts the proliferative effect of fatty acids on prostate cancer cells: crucial role of 5-lipoxygenase. Int J Cancer 2004; 112:87–93.

    Article  CAS  PubMed  Google Scholar 

  91. Sundaram S, Ghosh J. Expression of 5-oxoETE receptor in prostate cancer cells: critical role in survival. Biochem Biophys Res Comm 2006; 339:93–8.

    Article  CAS  PubMed  Google Scholar 

  92. Hughes-Fulford M, Chen Y, Tjandrawinata RR. Fatty acid regulates gene expression and growth of human prostate cancer PC-3 cells. Carcinogenesis 2001; 22:701–7.

    Article  CAS  PubMed  Google Scholar 

  93. Ghosh J, Myers CE. Inhibition of arachidonate 5-lipoxygenase triggers massive apoptosis in human prostate cancer cells. Proc Natl Acad Sci USA 1998; 95:13182–7.

    Article  CAS  PubMed  Google Scholar 

  94. Yoshimura R, Sano H, Masuda C, et al. Expression of cyclooxygenase-2 in prostate carcinoma. Cancer 2000; 89:589–96.

    Article  CAS  PubMed  Google Scholar 

  95. Narayanan NK, Narayanan BA, Reddy BS. A combination of docosahexaenoic acid and celecoxib prevents prostate cancer cell growth in vitro and is associated with modulation of nuclear factor-kappaB, and steroid hormone receptors. Int J Oncol 2005; 26: 785–92.

    CAS  PubMed  Google Scholar 

  96. Gamradt SC, Feeley BT, Liu NQ, et al. The effect of cyclooxygenase-2 (COX-2) inhibition on human prostate cancer induced osteoblastic and osteolytic lesions in bone. Anticancer Res 2005; 25:107–15.

    CAS  PubMed  Google Scholar 

  97. Hussain T, Gupta S, Mukhtar H. Cyclooxygenase-2 and prostate carcinogenesis. Cancer Lett 2003; 191:125–35.

    Article  CAS  PubMed  Google Scholar 

  98. Hong SH, Avis I, Vos MD, Martinez A, Treston AM, Mulshine JL. Relationship of arachidonic acid metabolizing enzyme expression in epithelial cancer cell lines to the growth effect of selective biochemical inhibitors. Cancer Res 1999; 59:2223–8.

    CAS  PubMed  Google Scholar 

  99. Gupta S, Srivastava M, Ahmad N, Bostwick DG, Mukhtar H. Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma. Prostate 2000; 42:73–8.

    Article  CAS  PubMed  Google Scholar 

  100. Kirschenbaum A, Liu X, Yao S, Levine AC. The role of cyclooxygenase-2 in prostate cancer. Urology 2001; 58:127–31.

    Article  CAS  PubMed  Google Scholar 

  101. Hubbard WC, Alley MC, McLemore TL, Boyd MR. Profiles of prostaglandin biosynthesis in sixteen established cell lines derived from human lung, colon, prostate, and ovarian tumors. Cancer Res 1988; 48:4770–5.

    CAS  PubMed  Google Scholar 

  102. Palayoor ST, Bump EA, Calderwood SK, Bartol S, Coleman CN. Combined antitumor effect of radiation and ibuprofen in human prostate carcinoma cells. Clin Cancer Res 1998; 4: 763–71.

    CAS  PubMed  Google Scholar 

  103. Liu XH, Yao S, Kirschenbaum A, Levine AC. NS398, a selective cyclooxygenase-2 inhibitor, induces apoptosis and down-regulates bcl-2 expression in LNCaP cells. Cancer Res 1998; 58:4245–9.

    CAS  PubMed  Google Scholar 

  104. Lim JT, Piazza GA, Han EK, et al. Sulindac derivatives inhibit growth and induce apoptosis in human prostate cancer cell lines. Biochem Pharmacol 1999; 58:1097–107.

    Article  CAS  PubMed  Google Scholar 

  105. Liu XH, Kirschenbaum A, Yao S, Lee R, Holland JF, Levine AC. Inhibition of cyclooxygenase-2 suppresses angiogenesis and the growth of prostate cancer in vivo. J Urol 2000; 164:820–5.

    Article  CAS  PubMed  Google Scholar 

  106. Hsu AL, Ching TT, Wang DS, Song X, Rangnekar VM, Chen CS. The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2. J Biol Chem 2000; 275:11397–403.

    Article  CAS  PubMed  Google Scholar 

  107. Kamijo T, Sato T, Nagatomi Y, Kitamura T. Induction of apoptosis by cyclooxygenase-2 inhibitors in prostate cancer cell lines. Int J Urol 2001; 8:S35–9.

    Article  Google Scholar 

  108. Ye F, Xui L, Yi J, Zhang W, Zhang DY. Anticancer activity of Scutellaria baicalensis and its potential mechanism. J Altern Complement Med 2002; 8:567–72.

    Article  PubMed  Google Scholar 

  109. Andrews J, Djakiew D, Krygier S, Andrews P. Superior effectiveness of ibuprofen compared with other NSAIDs for reducing the survival of human prostate cancer cells. Cancer Chemother Pharmacol 2002; 50:277–84.

    Article  CAS  PubMed  Google Scholar 

  110. Tjandrawinata RR, Dahiya R, Hughes-Fulford M. Induction of cyclo-oxygenase-2 mRNA by prostaglandin E2 in human prostatic carcinoma cells. Br J Cancer 1997; 75: 1111–8.

    CAS  PubMed  Google Scholar 

  111. Attiga FA, Fernandez PM, Weeraratna AT, Manyak MJ, Patierno SR. Inhibitors of prostaglandin synthesis inhibit human prostate tumor cell invasiveness and reduce the release of matrix metalloproteinases. Cancer Res 2000; 60:4629–37.

    CAS  PubMed  Google Scholar 

  112. Liu XH, Kirschenbaum A, Lu M, et al. Prostaglandin E(2) stimulates prostatic intraepithelial neoplasia cell growth through activation of the interleukin-6/GP130/STAT-3 signaling pathway. Biochem Biophys Res Comm 2002; 290:249–55.

    Article  CAS  PubMed  Google Scholar 

  113. Shappell SB, Manning S, Boeglin WE, et al. Alterations in lipoxygenase and cyclooxygenase-2 catalytic activity and mRNA expression in prostate carcinoma. Neoplasia 2001; 3:287–303.

    Article  CAS  PubMed  Google Scholar 

  114. Chen Y, Hughes-Fulford M. Prostaglandin E2 and the protein kinase A pathway mediate arachidonic acid induction of c-fos in human prostate cancer cells. Br J Cancer 2000; 82:2000–6.

    Article  CAS  PubMed  Google Scholar 

  115. Angelucci A, Garofalo S, Speca S, et al. Arachidonic acid modulates the crosstalk between prostate carcinoma and bone stromal cells. Endocr Relat Cancer 2008; 15:91–100.

    Article  CAS  PubMed  Google Scholar 

  116. Liu XH, Kirschenbaum A, Yu K, Yao S, Levine AC. Cyclooxygenase-2 suppresses hypoxia-induced apoptosis via a combination of direct and indirect inhibition of p53 activity in a human prostate cancer cell line. J Biol Chem 2005; 280:3817–23.

    Article  CAS  PubMed  Google Scholar 

  117. Mukherjee R, Edwards J, Underwood MA, Bartlett JM. The relationship between angiogenesis and cyclooxygenase-2 expression in prostate cancer. BJU Int 2005; 96:62–6.

    Article  CAS  PubMed  Google Scholar 

  118. Jain S, Chakraborty G, Raja R, Kale S, Kundu GC. Prostaglandin E2 regulates tumor angiogenesis in prostate cancer. Cancer Res 2008; 68:7750–9.

    Article  CAS  PubMed  Google Scholar 

  119. Miyata Y, Kanda S, Maruta S, et al. Relationship between prostaglandin E2 receptors and clinicopathologic features in human prostate cancer tissue. Urology 2006; 68: 1360–5.

    Article  PubMed  Google Scholar 

  120. Sahin M, Sahin E, Gumuslu S. Cyclooxygenase-2 in cancer and angiogenesis. Angiology 2009; 60:242–53.

    CAS  PubMed  Google Scholar 

  121. Narayanan NK, Narayanan BA, Bosland M, Condon MS, Nargi D. Docosahexaenoic acid in combination with celecoxib modulates HSP70 and p53 proteins in prostate cancer cells. Int J Cancer 2006; 119:1586–98.

    Article  CAS  PubMed  Google Scholar 

  122. Gupta S, Adhami VM, Subbarayan M, et al. Suppression of prostate carcinogenesis by dietary supplementation of celecoxib in transgenic adenocarcinoma of the mouse prostate model. Cancer Res 2004; 64:3334–43.

    Article  CAS  PubMed  Google Scholar 

  123. Fradet V, Cheng I, Casey G, Witte JS. Dietary omega-3 fatty acids, cyclooxygenase-2 genetic variation, and aggressive prostate cancer risk. Clin Cancer Res 2009; 15:2559–66.

    Article  CAS  PubMed  Google Scholar 

  124. Gupta S, Srivastava M, Ahmad N, Sakamoto K, Bostwick DG, Mukhtar H. Lipoxygenase-5 is overexpressed in prostate adenocarcinoma. Cancer 2001; 91:737–43.

    Article  CAS  PubMed  Google Scholar 

  125. Anderson KM, Harris JE. 5,8,11,14-eicosatetraynoic acid inhibits PC3 DNA synthesis and cellular proliferation, in part due to its 5'-lipoxygenase activity. Clin Physiol Biochem 1990; 8:308–13.

    CAS  PubMed  Google Scholar 

  126. Anderson KM, Ondrey F, Harris JE. ETYA, a pleiotropic membrane-active arachidonic acid analogue affects multiple signal transduction pathways in cultured transformed mammalian cells. Clin Biochem 1992; 25:1–9.

    Article  CAS  PubMed  Google Scholar 

  127. Anderson KM, Seed T, Ondrey F, Harris JE. The selective 5-lipoxygenase inhibitor A63162 reduces PC3 proliferation and initiates morphologic changes consistent with secretion. Anticancer Res 1994; 14:1951–60.

    CAS  PubMed  Google Scholar 

  128. Hussey HJ, Tisdale MJ. Mechanism of the anti-tumour effect of 2,3,5-trimethyl-6-(3-pyridylmethyl) 1,4-benzoquinone (CV-6504). Br J Cancer 1997; 75:845–9.

    CAS  PubMed  Google Scholar 

  129. Anderson KM, Seed T, Vos M, et al. 5-Lipoxygenase inhibitors reduce PC-3 cell proliferation and initiate nonnecrotic cell death. Prostate 1998; 37:161–73.

    Article  CAS  PubMed  Google Scholar 

  130. Harris JE, Alrefai WA, Meng J, Anderson KM. Five-lipoxygenase inhibitors reduce Panc-1 survival: synergism of MK886 with gamma linolenic acid. Adv Exp Med Biol 1999; 469:505–10.

    CAS  PubMed  Google Scholar 

  131. Miller TA, Ghosh J, Myers CE, Macdonald TL. 5-HETE congeners as modulators of cell proliferation. Bioorg Med Chem Lett 2000; 10:1913–6.

    Article  CAS  PubMed  Google Scholar 

  132. Lieberman R, Nelson WG, Sakr WA, et al. Executive Summary of the National Cancer Institute Workshop: Highlights and recommendations. Urology 2001; 57:4–27.

    Article  CAS  PubMed  Google Scholar 

  133. Yang P, Collin P, Madden T, et al. Inhibition of proliferation of PC3 cells by the branched-chain fatty acid, 12-methyltetradecanoic acid, is associated with inhibition of 5-lipoxygenase. Prostate 2003; 55:281–91.

    Article  CAS  PubMed  Google Scholar 

  134. O‘Flaherty JT, Rogers LC, Chadwell BA, et al. 5(S)-Hydroxy-6,8,11,14-E,Z,Z,Z-eicosatetraenoate stimulates PC3 cell signaling and growth by a receptor-dependent mechanism. Cancer Res 2002; 62:6817–9.

    PubMed  Google Scholar 

  135. Ezekwudo DE, Wang RC, Elegbede JA. Methyl jasmonate induced apoptosis in human prostate carcinoma cells via 5-lipoxygenase dependent pathway. J Exp Ther Oncol 2007; 6:267–77.

    CAS  PubMed  Google Scholar 

  136. Gao X, Grignon DJ, Chbihi T, et al. Elevated 12-lipoxygenase mRNA expression correlates with advanced stage and poor differentiation of human prostate cancer. Urology 1995; 46:227–37.

    Article  CAS  PubMed  Google Scholar 

  137. Yang P, Cartwright C, Chan D, Vijjeswarapu M, Ding J, Newman RA. Zyflamend-mediated inhibition of human prostate cancer PC3 cell proliferation: effects on 12-LOX and Rb protein phosphorylation. Cancer Biol Ther 2007; 6:228–36.

    Article  CAS  PubMed  Google Scholar 

  138. Pidgeon GP, Kandouz M, Meram A, Honn KV. Mechanisms controlling cell cycle arrest and induction of apoptosis after 12-lipoxygenase inhibition in prostate cancer cells. Cancer Res 2002; 62:2721–7.

    CAS  PubMed  Google Scholar 

  139. Pidgeon GP, Tang K, Cai YL, Piasentin E, Honn KV. Overexpression of platelet-type 12-lipoxygenase promotes tumor cell survival by enhancing alpha(v)beta(3) and alpha(v)beta(5) integrin expression. Cancer Res 2003; 63:4258–67.

    CAS  PubMed  Google Scholar 

  140. Nie D, Nemeth J, Qiao Y, et al. Increased metastatic potential in human prostate carcinoma cells by overexpression of arachidonate 12-lipoxygenase. Clin Exp Metastasis 2003; 20:657–63.

    Article  CAS  PubMed  Google Scholar 

  141. Kandouz M, Nie D, Pidgeon GP, Krishnamoorthy S, Maddipati KR, Honn KV. Platelet-type 12-lipoxygenase activates NF-kappaB in prostate cancer cells. Prostaglandins Other Lipid Mediat 2003; 71:189–204.

    Article  CAS  PubMed  Google Scholar 

  142. Timar J, Raso E, Dome B, et al. Expression, subcellular localization and putative function of platelet-type 12-lipoxygenase in human prostate cancer cell lines of different metastatic potential. Int J Cancer 2000; 87:37–43.

    Article  CAS  PubMed  Google Scholar 

  143. Nie D, Krishnamoorthy S, Jin R, et al. Mechanisms regulating tumor angiogenesis by 12-lipoxygenase in prostate cancer cells. J Biol Chem 2006; 281:18601–9.

    Article  CAS  PubMed  Google Scholar 

  144. Endsley MP, Aggarwal N, Isbell MA, et al. Diverse roles of 2-arachidonoylglycerol in invasion of prostate carcinoma cells: Location, hydrolysis and 12-lipoxygenase metabolism. Int J Cancer 2007; 121:984–91.

    Article  CAS  PubMed  Google Scholar 

  145. Kelavkar UP, Cohen C. 15-lipoxygenase-1 expression upregulates and activates insulin-like growth factor-1 receptor in prostate cancer cells. Neoplasia 2004; 6:41–52.

    CAS  PubMed  Google Scholar 

  146. Kelavkar UP, Parwani AV, Shappell SB, Martin WD. Conditional expression of human 15-lipoxygenase-1 in mouse prostate induces prostatic intraepithelial neoplasia: the FLiMP mouse model. Neoplasia 2006; 8:510–22.

    Article  CAS  PubMed  Google Scholar 

  147. Kelavkar UP, Nixon JB, Cohen C, Dillehay D, Eling TE, Badr KF. Overexpression of 15-lipoxygenase-1 in PC-3 human prostate cancer cells increases tumorigenesis. Carcinogenesis 2001; 22:1765–73.

    Article  CAS  PubMed  Google Scholar 

  148. Kelavkar UP, Glasgow W, Olson SJ, Foster BA, Shappell SB. Overexpression of 12/15-lipoxygenase, an ortholog of human 15-lipoxygenase-1, in the prostate tumors of TRAMP mice. Neoplasia 2004; 6:821–30.

    CAS  PubMed  Google Scholar 

  149. Kelavkar UP, Cohen C, Kamitani H, Eling TE, Badr KF. Concordant induction of 15-lipoxygenase-1 and mutant p53 expression in human prostate adenocarcinoma: correlation with Gleason staging. Carcinogenesis 2000; 21:1777–87.

    Article  CAS  PubMed  Google Scholar 

  150. Hsi LC, Wilson LC, Eling TE. Opposing effects of 15-lipoxygenase-1 and -2 metabolites on MAPK signaling in prostate. Alteration in peroxisome proliferator-activated receptor gamma. J Biol Chem 2002; 277:40549–56.

    Article  CAS  PubMed  Google Scholar 

  151. Tang S, Bhatia B, Maldonado CJ, et al. Evidence that arachidonate 15-lipoxygenase 2 is a negative cell cycle regulator in normal prostate epithelial cells. J Biol Chem 2002; 277:16189–201.

    Article  CAS  PubMed  Google Scholar 

  152. Tang DG, Bhatia B, Tang S, Schneider-Broussard R. 15-lipoxygenase 2 (15-LOX-2) is a functional tumor suppressor that regulates human prostate epithelial cell differentiation, senescence, and growth (size) . Prostaglandins Other Lipid Mediat 2007; 82:135–46.

    Article  CAS  PubMed  Google Scholar 

  153. Chen GG, Xu H, Lee JF, et al. 15-hydroxy-eicosatetraenoic acid arrests growth of colorectal cancer cells via a peroxisome proliferator-activated receptor gamma-dependent pathway. Int J Cancer 2003; 107:837–43.

    Article  CAS  PubMed  Google Scholar 

  154. Subbarayan V, Xu XC, Kim J, et al. Inverse relationship between 15-lipoxygenase-2 and PPAR-gamma gene expression in normal epithelia compared with tumor epithelia. Neoplasia 2005; 7:280–93.

    Article  CAS  PubMed  Google Scholar 

  155. Subbarayan V, Krieg P, Hsi LC, et al. 15-Lipoxygenase-2 gene regulation by its product 15-(S)-hydroxyeicosatetraenoic acid through a negative feedback mechanism that involves peroxisome proliferator-activated receptor gamma. Oncogene 2006; 25:6015–25.

    Article  CAS  PubMed  Google Scholar 

  156. Maldve RE, Kim Y, Muga SJ, Fischer SM. Prostaglandin E(2) regulation of cyclooxygenase expression in keratinocytes is mediated via cyclic nucleotide-linked prostaglandin receptors. J Lipid Res 2000; 41:873–81.

    CAS  PubMed  Google Scholar 

  157. Bagga D, Wang L, Farias-Eisner R, Glaspy JA, Reddy ST. Differential effects of prostaglandin derived from omega-6 and omega-3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. Proc Natl Acad Sci USA 2003; 100:1751–6.

    Article  CAS  PubMed  Google Scholar 

  158. Wijkander J, O‘Flaherty JT, Nixon AB, Wykle RL. 5-Lipoxygenase products modulate the activity of the 85-kDa phospholipase A2 in human neutrophils. J Biol Chem 1995; 270:26543–9.

    Article  CAS  PubMed  Google Scholar 

  159. Patel MI, Singh J, Niknami M, et al. Cytosolic phospholipase A2-alpha: a potential therapeutic target for prostate cancer. Clin Cancer Res 2008; 14:8070–9.

    Article  CAS  PubMed  Google Scholar 

  160. Wooten RE, Willingham MC, Daniel LW, et al. Novel translocation responses of cytosolic phospholipase A2alpha fluorescent proteins. Biochim Biophys Acta 2008; 1783:1544–50.

    Article  CAS  PubMed  Google Scholar 

  161. Rudling MJ, Stahle L, Peterson CO, Skoog L. Content of low density lipoprotein receptors in breast cancer tissue related to survival of patients. Br Med J (Clin Res Ed) 1986; 292:580–2.

    Article  CAS  Google Scholar 

  162. Chen Y, Hughes-Fulford M. Human prostate cancer cells lack feedback regulation of low-density lipoprotein receptor and its regulator, SREBP2. Int J Cancer 2001; 91:41–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris J. Edwards .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Edwards, I.J., Berquin, I.M., Chen, Y.Q., O’Flaherty, J.T. (2010). ω-3 PUFAs, Breast and Prostate Cancer: Experimental Studies. In: Calviello, G., Serini, S. (eds) Dietary Omega-3 Polyunsaturated Fatty Acids and Cancer. Diet and Cancer, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3579-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3579-0_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3578-3

  • Online ISBN: 978-90-481-3579-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics