Skip to main content

Computational Modeling of Vascular Hemodynamics

  • Chapter
  • First Online:
Computational Modeling in Biomechanics

Abstract

In addition to biochemical factors, hemodynamic factors that are governed by lumenal geometry and blood flow rates likely play an important role in the pathogenesis of cardiovascular disease. Numerous computational and experimental studies indicated correlation of certain hemodynamic parameters with initiation and progression of atherosclerotic plaques, while flow variables possibly affecting aneurysmal disease are still disputed. This chapter presents a review of publications on current state of the art for the Computational Fluid Dynamics (CFD) methods used in patient-specific flow modeling. Typical modeling assumptions and boundary conditions are described and discussed as well as some of the post-processing and visualization techniques. It is hoped that with the current advances in medical imaging and numerical methods, computational modeling will evolve into a clinical tool providing guidance for cardiovascular disease treatment on a patient-by-patient basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Libby, P., Ridker, P.M., Maseri A.: Inflammation and atherosclerosis. Circulation 105, 1135–1143 (2002)

    Google Scholar 

  2. Libby, P.: Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 104, 365–372 (2001)

    Google Scholar 

  3. Libby, P.: Lesion versus lumen. Nat. Med. 1(1), 17–18 (1995)

    Google Scholar 

  4. Ross, R.: Cell biology of atherosclerosis. Ann. Rev. Physiol. 57, 791–804 (1995)

    Google Scholar 

  5. Hademenos, G.J., Massoud, T.F.: Biophysical mechanisms of stroke. Stroke 28, 2067–2077 (1997)

    Google Scholar 

  6. Hajjar, D.P., Nicholson, A.C.: Atherosclerosis. Am. Sci. 83, 460–467 (1995)

    Google Scholar 

  7. Alexander, J.J.: The pathobiology of aortic aneurysms. J. Surg. Res. 117(1), 163–175 (2004)

    Google Scholar 

  8. Humphrey, J.D., Taylor, C.A.: Intracranial and abdominal aortic aneurysms: Similarities, differences, and need for a new class of computational models. Ann. Rev. Biomed. Eng. 10, 221–246 (2008)

    Google Scholar 

  9. Davies, M.J.: Aortic aneurysm formation-lessons from human studies and experimental models. Circulation 98, 193–195 (1998)

    Google Scholar 

  10. Reed, D., et al.: Are aortic aneurysms caused by atherosclerosis? Circulation 85, 205–211 (1992)

    Google Scholar 

  11. Powell, J., Greenhalgh R.: Cellular, enzymatic, and genetic factors in the pathogenesis of abdominal aortic aneurysms. J. Vasc. Surg. 9(2), 297–304 (1989)

    Google Scholar 

  12. Silverstein, M.D., et al.: Abdominal aortic aneurysm (AAA): Cost-effectiveness of screening, surveillance of intermediate-sized AAA, and management of symptomatic AAA. Proc. Baylor Univ. Med. Center 18(4), 345–367 (2005)

    Google Scholar 

  13. Nakayama, Y., et al.: Giant fusiform aneurysm of basilar artery: Consideration of its pathogenesis. Surg. Neurol. 51, 140–145 (1999)

    MathSciNet  Google Scholar 

  14. Hademenos, G., Massoud T.: The Physics of Cerebralvascular Diseases, pp. 311. Springer-Verlag, New York (1998)

    Google Scholar 

  15. Sekhar, L.N., Heros, R.C.: Origin, growth, and rupture of saccular aneurysms: A review. Neurosurgery 8(2), 248–260 (1981)

    Google Scholar 

  16. Byrne, J., Guglielmi, G.: Endovascular Treatment of Intracranial Aneurysms, pp. 248. Springer-Verlag, Berlin (1981)

    Google Scholar 

  17. Krex, D., Schackert, H.K., Schackert, G.: Genesis of cerebral aneurysms – An update. Acta. Neurochirurgica (Wien) 143(5), 429–448; discussion 448–449 (2001)

    Google Scholar 

  18. Bederson, J.B., et al.: Recommendations for the management of patients with unruptured intracranial aneurysms: A statement for healthcare professionals from the stroke council of the American Heart Association. Stroke 31(11), 2742–2750 (2000)

    Google Scholar 

  19. Rinkel, G.J.E., et al.: Prevalence and risk of rupture of intracranial aneurysms. A systematic review. Stroke 29(1), 251–256 (1998)

    Google Scholar 

  20. Wardlaw, J., White, P.: The detection and management of unruptured intracranial aneurysms. Brain 123, 205–221 (2000)

    Google Scholar 

  21. Schievink, W.I.: Intracranial aneurysms. New Engl. J. Med. 336, 28–40 (1997)

    Google Scholar 

  22. Ma, B., Harbaugh, R.E., Raghavan, M.L.: Three-dimensional geometrical characterization of cerebral aneurysms. Ann. Biomed. Eng. 32, 264–273 (2004)

    Google Scholar 

  23. Humphrey, J.D., Na, S.: Elastodynamics and arterial wall stress. Ann. Biomed. Eng. 30, 509–523 (2002)

    Google Scholar 

  24. Juvela, S., Porras, M., Poussa, K.: Natural history of unruptured intracranial aneurysms: Probability of and risk factors for aneurysm rupture. J. Neurosurg. 93(3), 379–387 (2000)

    Google Scholar 

  25. Steiger, H.J., et al.: Growth of aneurysms can be understood as passive yield to blood pressure: An experimental study. Acta. Neurochirurgica. 100, 74–78 (1989)

    Google Scholar 

  26. Lawton, M.T., Spetzler, R.F.: Surgical strategies for giant intracranial aneurysms. Acta. Neurochirurgica. Supp. 72, 141–156 (1999)

    Google Scholar 

  27. Peerless, S., Wallace, M., Drake, C.: Giant intracranial aneurysms. In: Youmans J. (ed.) Neurological Surgery. A Comprehensive Reference Guide to the Diagnosis and Management of Neurological Problems, pp. 1742–1763. W.B. Saunders, Philadelphia (1990)

    Google Scholar 

  28. Pia, H.W., Zierski J.: Giant cerebral aneurysms. Neurosurg. Rev. 5(4), 117–148 (1982)

    Google Scholar 

  29. Kodama, N., Suzuki, J.: Surgical treatment of giant aneurysms. Neurosurg. Rev. 5(4), 155–160, (1982)

    Google Scholar 

  30. Bale-Glickman, J., et al.: Experimental flow studies in exact-replica phantoms of atherosclerotic carotid bifurcations under steady input conditions. J. Biomech. Eng. 125, 38–48 (2003)

    Google Scholar 

  31. Friedman, M.H., et al.: Correlation between intimal thickness and fluid shear in human arteries. Atherosclerosis 39, 425 (1981)

    Google Scholar 

  32. Zarins, C.K., et al.: Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res. 53, 502–514 (1983)

    Google Scholar 

  33. Ku, D.N., et al.: Pulsatile flow and atherosclerosis in the human carotid bifurcation. Arteriosclerosis 5, 293–302 (1985)

    Google Scholar 

  34. Berger, S.A., Jou, L.-D.: Flows in stenotic vessels. Ann. Rev. Fluid Mech. 32, 347–384 (2000)

    MathSciNet  Google Scholar 

  35. Berger, S.A., Rayz, V.L.: Flow in the Stenotic Carotid Bifurcation. In: Hafez, M. (ed.) Numerical Simulations of Incompressible Flows. World Scientific Publishing Co. Pvt. Ltd. (2003)

    Google Scholar 

  36. Stroud, J.S., Berger, S.A., Saloner, D.: Numerical analysis of flow through a severely stenotic carotid artery bifurcation. J. Biomech. Eng. 124, 9–20 (2002)

    Google Scholar 

  37. Davies, P.F., et al.: Hemodynamics and atherogenesis. Endothelial surface dynamics in flow signal transduction. Ann. New York Acad. Sci. 748, 86–102; discussion 102–103 (1995)

    Google Scholar 

  38. Friedman, M.H., et al.: Arterial geometry affects hemodynamics. A potential risk factor for atherosclerosis. Atherosclerosis 46, 225–231 (1983)

    Google Scholar 

  39. Giddens, D.P., Zarins, C.K., Glagov, S.: The role of fluid mechanics in the localization and detection of atherosclerosis. Trans. ASME 115, 588–594 (1993)

    Google Scholar 

  40. Glagov, S., et al.: Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Arch. Pathol. Lab. Med. 112(10), 1018–1031 (1988)

    Google Scholar 

  41. Fry, D.L.: Acute vascular endothelial changes associated with increased blood velocity gradients. Circ. Res. 22(2), 165–197 (1968)

    Google Scholar 

  42. Caro, C.G., Fitzgerald, J.M., Schroter, R.C.: Atheroma and arterial wall shear observations, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc. Roy. Soc. London Series B 17, 109–159 (1971)

    Google Scholar 

  43. Ku, D.N., et al.: Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5(3), 293–302 (1985)

    Google Scholar 

  44. Lieber, B.B., Giddens, D.P.: Post-stenotic core flow behavior in pulsatile flow and its effects on wall shear stress. J. Biomech. 23, 597–605 (1990)

    Google Scholar 

  45. Langille, B.L., Reidy, M.A., Kline, R.L.: Injury and repair of endothelium at sites of flow disturbances near abdominal aortic coarctations in rabbits. Arteriosclerosis 6(2), 146–154 (1986)

    Google Scholar 

  46. Zarins, C.K., et al.: Shear stress regulation of artery lumen diameter in experimental atherogenesis. J. Vasc. Surg. 5, 413–420 (1987)

    Google Scholar 

  47. Friedman, M.H., et al.: Shear-dependent thickening of the human arterial intima. Atherosclerosis 60(2), 161–171 (1986)

    Google Scholar 

  48. Friedman, M.H.: A biologically plausible model of thickening of arterial intima under shear. Arteriosclerosis 9(4), 511–522 (1989)

    Google Scholar 

  49. Lee, D., and Chiu, J.J.: Intimal thickening under shear in carotid bifurcation – a numerical study. J. Biomech. 29, 1–11 (1996)

    MATH  Google Scholar 

  50. Rappitsch, G., Perktold, K.: Pulsatile albumin transport in large arteries: A numerical simulation study. J. Biomech. Eng. 118(4), 511–519 (1996)

    Google Scholar 

  51. Ma, P., Li, X., Ku, D.N.: Convective mass transfer at the carotid bifurcation. J. Biomech. 30, 565–571 (1997)

    Google Scholar 

  52. Jo, H., et al.: Endothelial albumin permeability is shear dependent, time dependent, and reversible. Am. J. Physiol. 260(6 Pt 2), H1992–H1996 (1991)

    Google Scholar 

  53. Ogunrinade, O., Kameya, G.T., Truskey, G.A.: Effect of fluid shear stress on the permeability of the arterial endothelium. Ann. Biomed. Eng. 30, 430–446 (2002)

    Google Scholar 

  54. Dewey, C.F., et al.: The dynamic response of vascular endothelial cells to fluid shear stress. ASME J. Biomech. Eng. 103, 177–185 (1981)

    Google Scholar 

  55. Nerem, R.M., Levesque, M.J., Cornhill, J.F.: Vascular endothelial morphology as an indicator of blood flow. ASME J. Biomech. Eng. 103, 172–176 (1981)

    Google Scholar 

  56. DePaola, N., et al.: Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb. 12(11), 1254–1257 (1992)

    Google Scholar 

  57. Weinbaum, S., Chien, S.: Lipid transport aspects of atherogenesis. J. Biomech. Eng. 115(4B), 602–610 (1993)

    Google Scholar 

  58. Morigi, M., et al.: Fluid shear stress modulates surface expression of adhesion molecules by endothelial cells. Blood 85, 1696–1703 (1995)

    Google Scholar 

  59. Nagel, T., et al.: Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells. J. Clin. Invest. 94, 885–891 (1994)

    Google Scholar 

  60. Simon, S.I., Goldsmith, H.L.: Leukocyte adhesion dynamics in shear flow. Ann. Biomed. Eng. 30, 315–332 (2002)

    Google Scholar 

  61. Jou, L.D., et al.: Computational approach to quantifying hemodynamic forces in giant cerebral aneurysms. Am. J. Neuroradiol. 24, 1804–1810 (2003)

    MathSciNet  Google Scholar 

  62. Steinman, D.A., et al.: Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. Am. J. Neuroadiol. 24, 559–566 (2003)

    Google Scholar 

  63. Imbesi, S.G., Kerber, C.W.: Analysis of slipstream flow in a wide-necked basilar artery aneurysm: evaluation of potential treatment regimes. Am. J. Neuroadiol. 22, 721–724 (2001)

    Google Scholar 

  64. Mantha, A., et al.: Hemodynamics in a cerebral artery before and after the formation of an aneurysm. Am. J. Neuroradiol. 27, 1113–1118 (2006)

    Google Scholar 

  65. Burleson, A., Turitto, V.: Identification of quantifiable hemodynamic factors in the assessment of cerebral aneurysm behavior. Thromb Haemostasis 76, 118–23 (1996)

    Google Scholar 

  66. Gobin, Y.P., et al.: In vitro study of haemodynamics in a giant saccular aneurysm model: influence of flow dynamics in the parent vessel and effects of coil embolisation. Neuroradiology 36, 530–536 (1994)

    Google Scholar 

  67. Liu, Y., et al.: Pulsatile flow simulation in arterial vascular segments with intravascular ultrasound images. Med. Eng. Phys. 23, 583–595 (2001)

    Google Scholar 

  68. Myers, J.G., et al.: Factors influencing blood flow patterns in the human right coronary artery. Ann. Biomed. Eng. 29, 109–120 (2001)

    Google Scholar 

  69. Lei, M., Kleinstreuer, C., Truskey, G.A.: Numerical investigation and prediction of atherogenic aites in branching arteries. J. Biomech. Eng. 117, 350–357 (1995)

    Google Scholar 

  70. Jou, L.D., et al.: Correlation between lumenal geometry changes and hemodynamics in fusiform intracranial aneurysms. Am. J. Neuroradiol. 26, 2357–2363 (2005)

    Google Scholar 

  71. Sekhar, L., Heros, R.: Origin, growth, and rupture of saccular aneurysms: A review. Neurosurgery 8, 248–260 (1981)

    Google Scholar 

  72. Awad, I.A., Barrow, D.L. (eds.): Giant Intracranial Aneurysms, pp. 299. American Association of Neurological Surgeons (1995)

    Google Scholar 

  73. Strother, C.: In vitro study of haemodynamics in a giant saccular aneurysm model: Influence of flow dynamics in the parent vessel and effects of coil embolization. Neuroradiology 37, 159–161 (1995)

    Google Scholar 

  74. Gobin, Y., et al.: In vitro study of haemodynamics in a giant aneurysm model: Influence of flow dynamics in the parent vessel and effects of coil embolization. Neuroradiology 36, 530–536 (1994)

    Google Scholar 

  75. Steiger, H.J., et al.: Hemodynamic stress in lateral saccular aneurysms. Acta. Neurochirurgica. 86, 98–105 (1987)

    Google Scholar 

  76. Steiger, H., et al.: Basic flow structure in saccular sneurysms: A flow visualization study. Heart & Vessels 3, 55–65 (1987)

    Google Scholar 

  77. Burleson, A., Strother, C., Turitto, V.: Computer modeling of intracranial saccular and lateral aneurysms for the study of their hemodynamics. Neurosurgery 37(4), 774–784 (1995)

    Google Scholar 

  78. Ferziger, J., Peric, M.: Computational Methods for Fluid Dynamics. Springer, Berlin (1996)

    MATH  Google Scholar 

  79. Taylor, C.A., Hughes, J.R., Zarins, C.K.: Finite element modeling of blood flow in arteries. Comput. Meth. Appl. Mech. Eng. 158, 155–196 (1998)

    MATH  MathSciNet  Google Scholar 

  80. Steinman, D.A.: Image-based computational fluid dynamics modeling in realistic arterial geometries. Ann. Biomed. Eng. 30, 483–497 (2002)

    Google Scholar 

  81. Moyle, K.R., Antiga, L., Steinman, D.A.: Inlet conditions for image-based CFD models of the carotid bifurcation: Is it reasonable to assume fully developed flow? J. Biomech. Eng. 128, 371–379 (2006)

    Google Scholar 

  82. Castro, M.A., Putman, C.M., Cebral, J.R.: Computational fluid dynamics modeling of intracranial aneurysms: Effects of parent artery segmentation on intra-aneurysmal hemodynamics. Am. J. Neuroradiol. 27, 1703–1709 (2006)

    Google Scholar 

  83. Milner, J.S., et al.: Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects. J. Vascular Surg. 28, 143–156 (1998)

    Google Scholar 

  84. Womersley, J.R.: Oscillatory motion of a viscous liquid in a thin-walled elastic tube. I. The linear approximation for long waves. Philos. Mag. 7, 199–221 (1955)

    MathSciNet  Google Scholar 

  85. Formaggia, L., et al.: Multiscale modelling of the circulatory system: A preliminary analysis. Comput. Visual. Sci. 2, 75–83 (1999)

    MATH  Google Scholar 

  86. Wan, J., et al.: A one-dimensional finite element method for simulation-based medical planning for cardiovascular disease. Comput. Meth. Biomech. Biomed. Eng. 5, 195–206 (2002)

    Google Scholar 

  87. Olufsen, M.S., et al.: Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Eng. 28(11), 1281–1299 (2000)

    Google Scholar 

  88. Formaggia, L., et al.: On the Coupling of 3D and 1D Navier–Stokes Equations for Flow Problems in Compliant Vessels. Computer Methods in Applied Mechanics and Engineering, 191, pp. 561–582 (2001)

    MATH  MathSciNet  Google Scholar 

  89. Vignon-Clementel, I.E., et al., Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Computer Methods in Applied Mechanics and Engineering, 2006. 195: pp. 3776–3796

    MATH  MathSciNet  Google Scholar 

  90. Rayz, V.L., Berger, S., Saloner, D.: Transitional flows in arterial fluid dynamics. Comput. Meth. Appl. Mech. Eng. 196, 3043–3048 (2007)

    MATH  Google Scholar 

  91. Shahcheraghi, N., et al.: Unsteady and three-dimensional simulation of blood flow in the human aortic arch. J. Biomech. Eng. 124(4), 378–387 (2002)

    Google Scholar 

  92. Shadden, S.C., Lekien, F., Marsden, J.E.: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica. D 212, 271–304 (2005)

    MATH  MathSciNet  Google Scholar 

  93. Shadden, S.C., Taylor, C.A.: Characterization of coherent structures in the cardiovascular system. Ann. Biomed. Eng. 36(7), 1152–1162 (2008)

    Google Scholar 

  94. Kim, S.: A Study of Non-Newtonian Viscosity and Yield Stress of Blood in a Scanning Capillary-Tube Rheometer. Drexel University (2002)

    Google Scholar 

  95. Thurston, G.B.: Viscoelasticity of human blood. Biophys. J. 12, 1205–1217 (1972)

    Google Scholar 

  96. Chien, S., et al.: Effect of hematocrit and plasma proteins on human blood rheology at low shear rates. J. Appl. Physiol. 21, 81–87 (1966)

    Google Scholar 

  97. Patel, D.J., Vaishnav, R.N.: Basic Hemodynamics and Its Role in Disease Processes. University Park Press, Baltimore, MD (1980)

    Google Scholar 

  98. Perktold, K., Resch, M., Florian, H.: Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model. J. Biomech. Eng. 113, 464–475 (1991)

    Google Scholar 

  99. Lowe, G.D.O., et al.: Blood viscosity and risk of cardiovascular events: The Edinburgh Artery Study. Br. J. Haematol. 96, 168–173 (1997)

    Google Scholar 

  100. Sloop, G.D., Garber, D.W.: The effects of low-density lipoprotein and high-density lipoprotein on blood viscosity correlate with their association with risk of atherosclerosis in humans. Clin. Sci. 92, 473–479 (1997)

    Google Scholar 

  101. Fisher, M., Meiselman, H.J.: Hemorheological factors in cerebral ischemia. Stroke 122, 1164–1169 (1991)

    Google Scholar 

  102. Liepsch, D.W.: Effect of flood flow parameters on flow patterns at arterial bifurcations studies in models. In: Liepsch, D.W. (ed.) Blood Flow in Large Arteries: Applications to Atherogenesis and Clinical Medicine, Monographs on Atherosclerosis, pp. 63–76. Basel, Karger (1990)

    Google Scholar 

  103. Tu, C., Deville, M.: Pulsatile flow of non-Newtonian fluids through arterial stenosis. J. Biomech. 29, 899–908 (1996)

    Google Scholar 

  104. Choi, H.W., Barakat, A.I.: Numerical study of the impact of non-Newtonian blood behavior on flow over a two-dimensional backward facing step. Biorheology 42, 493–509 (2005)

    Google Scholar 

  105. Misra, J.C., Patra, M.K., Misra, S.C.: A non-Newtonian fluid model for blood flow through arteries under stenotic conditions. J. Biomech. Eng. 26, 1129–1141 (1993)

    Google Scholar 

  106. Leuprecht, A., Perktold, K.: Computer simulation of non-Newtonian effects on blood flow in large arteries. Comput. Meth. Biomech. Biomed. Eng. 4, 149–163 (2001)

    Google Scholar 

  107. Nakamura, M., Sawada, T.: Numerical study on the flow of a non-Newtonian fluid through an axisymmetric stenosis. J. Biomech. Eng. 110, 137–143 (1988)

    Google Scholar 

  108. Chaturani, P., Samy, R.P.: A study of non-Newtonian aspects of blood flow through stenosed arteries and its applications in arterial diseases. Biorheology 22, 521–531 (1985)

    Google Scholar 

  109. Valencia, A., et al.: Non-Newtonian blood flow dynamics in a right internal carotid artery with a saccular aneurysm. Int. J. Numer. Meth. Fluids 50, 751–764 (2006)

    MATH  Google Scholar 

  110. Johnston, B.M., et al.: Non-Newtonian blood flow in human right coronary arteries: Transient simulations. J. Biomech. 39, 1116–1128 (2006)

    Google Scholar 

  111. Thurston, G.B.: Effects of hematocrit on blood viscoelasticity and in establishing normal values. Biorheology 15, 239–249 (1978)

    Google Scholar 

  112. Picart, C., et al.: Human blood shear yield stress and its hematocrit dependence. J. Rheology 42, 1–12 (1998)

    Google Scholar 

  113. Walburn, F.J., Schneck, D.J.: A constitutive equation for whole human blood. Biorheology 13, 201–210 (1976)

    Google Scholar 

  114. Yeleswarapu, K.K.: Evaluation of continuum model for characterizing the constitutive behavior of blood, Ph.D. thesis, University of Pittsburg (1996)

    Google Scholar 

  115. Yeleswarapu, K.K., et al.: The flow of blood in tubes: Theory and experiment. Mech. Res. Commun. 25, 257–262 (1998)

    MATH  Google Scholar 

  116. Low, M., Perktold, K., Raunig, R.: Hemodynamics in rigid and distensible saccular aneurysms: A numerical study of pulsatile flow characteristics. Biorheology 30, 287–298 (1993)

    Google Scholar 

  117. Perktold, K., Peter, R., Resch, M.: Pulsatile non-Newtonian blood flow simulation through a bifurcation with an aneurysm. Biorheology 26, 1011–1030 (1989)

    Google Scholar 

  118. Valencia, A.A., et al.: Blood flow dynamics in saccular aneurysm models of the basilar artery. J. Biomech. Eng. 128, 516–526 (2006)

    Google Scholar 

  119. Kerber, C.W., et al.: Flow dynamics in a fatal aneurysm of the basilar artery. AJNR Am. J. Neuroradiol. 17, 1417–1421 (1996)

    Google Scholar 

  120. Lee, S.W., Steinman, D.A.: On the relative importance of rheology for image-based CFD models of the carotid bifurcation. J. Biomech. Eng. 129(2), 273–278 (2007)

    Google Scholar 

  121. Rayz, V.L., et al.: Numerical modeling of the flow in intracranial aneurysms: Prediction of regions prone to thrombus formation. Ann. Biomed. Eng. 36(11), 1793–804 (2008)

    Google Scholar 

  122. Anand, M., Rajagopal, K.R.: A mathematical model to describe the change in the constitutive character of blood due to platelet activation. CR Mecanique 330, 557–562 (2002)

    MATH  Google Scholar 

  123. Fogelson, A.L.: Continuum models of platelet aggregation: Formulation and mechanical properties. SIAM J. Appl. Maths. 52, 1089–1110 (1992)

    MATH  MathSciNet  Google Scholar 

  124. Hathcock, J.J.: Flow effects on coagulation and thrombosis. Arterioscler. Thrombosis Vasc. Biol. 26, 1729–1737 (2006)

    Google Scholar 

  125. Khalifa, A.M.A., Giddens, D.P.: Characterization and evolution of poststenotic flow disturbances. J. Biomech. 14, 279–296 (1981)

    Google Scholar 

  126. Kim, B.M., Corcoran, W.H.: Experimental measurements of turbulence spectra distal to stenoses. J. Biomech. 7, 335–342 (1974)

    Google Scholar 

  127. Clark, C.: Turbulent velocity measurements in a model of aortic stenosis. J. Biomech. 9, 677–687 (1976)

    Google Scholar 

  128. Clark, C.: The propagation of turbulence produced by a stenosis. J. Biomech. 13, 591–604 (1980)

    Google Scholar 

  129. Cassanova, R.A., Giddens, D.P.: Disorder distal to modeled stenoses in steady and pulsatile flow. J. Biomech. 11(10–12), 441–453 (1978)

    Google Scholar 

  130. Mittal, R., Simmons, S.P., Udaykumar, H.S.: Application of large-eddy simulation to the study of pulsatile flow in a modeled arterial stenosis. J. Biomech. Eng. 123, 325–332 (2001)

    Google Scholar 

  131. Ghalichi, F., et al.: Low Reynolds number turbulence modeling of blood flow in arterial stenoses. Biorheology 35(4–5), 281–294 (1998)

    Google Scholar 

  132. Ghalichi, F., Deng, X.: Turbulence detection in a stenosed artery bifurcation by numerical simulation of pulsatile blood flow using the low-Reynolds number turbulence model. Biorheology 40, 637–654 (2003)

    Google Scholar 

  133. Deshpande, M.D., Giddens, D.P.: Turbulence measurements in a constricted tube. J. Fluid Mech. 97, 65–89 (1980)

    Google Scholar 

  134. Ahmed, S.A., Giddens, D.P.: Flow disturbance measurements through a constricted tube at moderate Reynolds numbers. J. Biomech. 16(12), 955–963 (1983)

    Google Scholar 

  135. Loree, H.M., et al.: Turbulent pressure fluctuations on surface of model vascular stenoses. Am. J. Physiol. 261, H644–H650 (1991)

    Google Scholar 

  136. Bluestein, D., Einav, S., The effect of varying degrees of stenosis on the characteristics of turbulent pulsatile flow through heart valves. J. Biomech. 28, 915–924 (1995)

    Google Scholar 

  137. Wilcox, D.C.: A half century historical review of the k-w model. AIAA-91–0615 (1991)

    Google Scholar 

  138. Stroud, J.S.: Numerical simulation of blood flow in the stenotic artery bifurcation, Ph.D. thesis, University of California (2000)

    Google Scholar 

  139. Mittal, R., Simmons, S.P., Udaykumar, H.S.: Application of large-eddy simulation to the study of pulsatile flow in a modeled arterial stenosis. J. Biomech. Eng. 123, 325–332 (2001)

    Google Scholar 

  140. Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity 61, 1–48 (2000)

    MATH  MathSciNet  Google Scholar 

  141. Holzapfel, G.A., Schulze-Bauer, C.A.J., Stadler, M.: Mechanics of angioplasty: Wall, balloon and stent. In: Mechanics in Biology, ASME, AMD-242/BED-46, 141–156 (2000)

    Google Scholar 

  142. Hughes, T.J.R., Liu, W.K., Zimmermann, T.K.: Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput. Meth. Appl. Mech. Eng. 29, 329–349 (1981)

    MATH  MathSciNet  Google Scholar 

  143. Huo, Y., Kassab, G.S.: Pulsatile blood flow in the entire coronary arterial tree: Theory and experiment. Am. J. Physiology–Heart Circ. Physiol. 291(3), H1074–H1087 ( 2006)

    Google Scholar 

  144. Huo, Y., et al., Effects of vessel compliance on flow pattern in the porcine epicardial right coronary arterial tree. J. Biomech. 42(5), 594–602 (2009)

    Google Scholar 

  145. Younis, H.F., et al.: Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: Investigation of inter-individual variation. Biomech. Model. Mechanobiol. 3(1), 17–32 (2004)

    Google Scholar 

  146. Torii, R., et al.: Influence of wall elasticity in patient-specific hemodynamic simulations. Comput. Fluids 36(1), 160–168 (2007)

    MATH  MathSciNet  Google Scholar 

  147. Figueroa, A., et al.: A coupled momentum method to model blood flow in deformable arteries. WCCM VI in conjunction with APCOM’04 Beijing, China (2004)

    Google Scholar 

  148. Steinman, D.A.: Image-based computational fluid dynamics: A new paradigm for monitoring hemodynamics and atherosclerosis. Curr. Drug Targets – Cardiovasc. Haematol. Disorders 4, 183–197 (2004)

    Google Scholar 

  149. Taylor, C.A., et al.: Predictive medicine: Computational techniques in therapeutic decision-making. Comput. Aided Surg. 4, 231–247 (1999)

    Google Scholar 

  150. Long, Q., et al.: The combination of magnetic resonance angiography and computational fluid dynamics: A critical review. Crit. Rev. Biomed. Eng. 26, 227–274 (1998)

    Google Scholar 

  151. Saloner, D., et al.: Imaging and CFD in the analysis of vascular disease progression. In: Medical Imaging 2006: Physiology, Function, and Structure from Medical Images. San Diego, CA (2006)

    Google Scholar 

  152. Bergeron, P., et al.: Radiation doses to patients in neurointerventional procedures. Am. J. Neuroradiol. 15, 1809–1812 (1994)

    Google Scholar 

  153. Long, Q., et al.: Reconstruction of blood flow patterns in a human carotid bifurcation: A combined CFD and MRI study. J. Magn. Reson. Imag. 11, 299–311 (2000)

    Google Scholar 

  154. Tateshima, S., et al.: Intraaneurysmal flow dynamics study featuring an acrylic aneurysm model manufactured using a computerized tomography angiogram as a mold. J. Neurosurg. 95, 1020–1027 (2001)

    Google Scholar 

  155. Long, Q., et al.: Numerical study of blood flow in an anatomically realistic aorto-iliac bifurcation generated from MRI data. Magnet. Reson. Med. 43, 565–576 (2000)

    Google Scholar 

  156. Wang, K.C., Dutton, R.W., Taylor, C.A.: Improving geometric model construction for blood flow modeling. IEEE Eng. Med. Biol. Mag. 18, 33–39 (1999)

    Google Scholar 

  157. Zhao, S.Z., et al.: Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J. Biomech. 33, 975–984 (2000)

    Google Scholar 

  158. Moore, J.A., et al.: Accuracy of computational hemodynamics in complex arterial geometries reconstructed from magnetic resonance imaging. Ann. Biomed. Eng. 27(1), pp. 32–41 (1999)

    Google Scholar 

  159. Ladak, H.M., et al.: A semi-automatic technique for measurement of arterial wall from black blood MRI. Med. Phys. 28, 1098–1107 (2001)

    Google Scholar 

  160. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    MATH  MathSciNet  Google Scholar 

  161. Wang, K.C.-Y.: Level set methods for computational prototyping with application to hemodynamic modeling, Ph.D. thesis, Stanford University (2001)

    Google Scholar 

  162. Sethian, J.A.: Level Set Methods and Fast Marching Methods, 2 edn. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  163. Cebral, J.R., et al.: Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: Technique and sensitivity. IEEE Trans. Med. Imag. 24(4), 457–467 (2005)

    Google Scholar 

  164. Boussel, L., et al.: Aneurysm growth occurs at region of low wall shear stress: Patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke 39, 2997–3002 (2008)

    Google Scholar 

  165. Stroud, J.S., Berger, S.A., Saloner, D.: Influence of stenosis morphology on flow through severely stenotic vessels: Implications for plaque rupture. J. Biomech. 33(4), 443–455 (2000)

    Google Scholar 

  166. Kaazempur-Mofrad, M.R., et al.: Characterization of the atherosclerotic carotid bifurcation using MRI, finite element modeling, and histology. Ann. Biomed. Eng. 32, 932–946 (2004)

    Google Scholar 

  167. Steinman, D.A., et al.: Flow patterns at the stenosed carotid bifurcation: Effect of concentric versus eccentric stenosis. Ann. Biomed. Eng. 28, 415–423 (2000)

    Google Scholar 

  168. Tambasco, M., Steinman, D.A.: Path-dependent hemodynamics of the stenosed carotid bifurcation. Ann. Biomed. Eng. 31, 1054–1065 (2003)

    Google Scholar 

  169. Hassan, T., et al.: Computational simulation of therapeutic parent artery occlusion to treat giant vertebrobasilar aneurysm. Am. J. Neuroradiol. 25, 63–68 (2004)

    Google Scholar 

  170. Burleson, A.C., Strother, C.M., Turitto, V.T.: Computer modeling of intracranial saccular and lateral aneurysms for the study of their hemodynamics. Neurosurgery 37, 774–782 (1995)

    Google Scholar 

  171. Valencia, A., et al.: Comparison of haemodynamics in cerebral aneurysms of different sizes located in the ophthalmic artery. Int. J. Numeric. Meth. Fluids 53, 793–809 (2007)

    MATH  MathSciNet  Google Scholar 

  172. Tateshima, S., et al.: Intra-aneurysmal hemodynamics during the growth of an unruptured aneurysm: in vitro study using longitudinal CT angiogram database. Am. J. Neuroradiol. 28(4), 622–627 (2007)

    Google Scholar 

  173. Jou, L.D., et al.: Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. Am. J. Neuroradiol. 29, 1761–1767 (2008)

    Google Scholar 

  174. Pelc, N.J.: Flow quantification and analysis methods. Magn. Reson. Imag. Clin. North Am. 3, 413–424 (1995)

    Google Scholar 

  175. Sommer, G., et al.: Renal blood flow: Measurement in vivo with rapid spiral MR imaging. Radiology 208(3), 729–734 (1998)

    Google Scholar 

  176. Markl, M., et al.: Time-resolved three-dimensional phase-contrast MRI. J. Magn. Reson. Imag. 17(4), 499–506 (2003)

    Google Scholar 

  177. Markl, M., Alley, M.T., Pelc, N.J.: Balanced phase-contrast steady-state free precession (PC-SSFP): A novel technique for velocity encoding by gradient inversion. Magn. Reson. Med. 49(5), 945–952 (2003)

    Google Scholar 

  178. Steinman, D.A., et al.: Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI. Magn. Reson. Med. 47(1), 149–159 (2002)

    Google Scholar 

  179. Rayz, V.L., et al.: Numerical simulations of flow in cerebral aneurysms: Comparison of CFD results and in vivo MRI measurements. J. Biomech. Eng. 130(5):051011 (2008)

    Google Scholar 

  180. Boussel, L., Rayz, V.L., Martin, A., Acevedo-Bolton, G., Lawton, M., Higashida, R., Smith, W.S., Young, W.L., and Saloner, D.: Phase-Contrast MRI measurements in intra-cranial aneurysms in-vivo of flow patterns, velocity fields and wall shear stress: A comparison with CFD. Magnetic Resonance in Medicine, 61:409–417 (2009)

    Google Scholar 

  181. Acevedo-Bolton, G., et al.: Estimating the hemodynamic impact of interventional treatments of aneurysms: Numerical simulation with experimental validation: Technical case report. Neurosurgery 59, E429–E430 (2006)

    Google Scholar 

  182. Bharadvaj, B.K., Mabon, R.F., Giddens, D.P.: Steady flow in a model of the human carotid bifurcation. Part II – Laser-Doppler anemometer measurements. J. Biomech. 15(5), 363–378 (1982)

    Google Scholar 

  183. Motomiya, M., Karino, T.: Flow patterns in the human carotid artery bifurcation. Stroke 15(1), 50–56 (1984)

    Google Scholar 

  184. Kerber, C.W., Heilman, C.B.: Flow dynamics in the human carotid artery: I. Preliminary observations using a transparent elastic model. Am. J. Neuroradiol. 13(1), 173–180 (1992)

    Google Scholar 

  185. Ku, D.N., Giddens, D.P.: Pulsatile flow in a model carotid bifurcation. Arteriosclerosis 3(1), 31–39 (1983)

    Google Scholar 

  186. LoGerfo, F.W., Nowak, M.D., Quist, W.C.: Structural details of boundary layer separation in a model human carotid bifurcation under steady and pulsatile flow conditions. J. Vasc. Surg. 2(2), 263–269 (1985)

    Google Scholar 

  187. Rindt, C.C., Steenhoven, A.A.: Unsteady flow in a rigid 3-D model of the carotid artery bifurcation. J. Biomech. Eng. 118(1), 90–96 (1996)

    Google Scholar 

  188. Ku, D.N., Giddens, D.P.: Laser Doppler anemometer measurements of pulsatile flow in a model carotid bifurcation. J. Biomech. 20(4), 407–421 (1987)

    Google Scholar 

  189. Adrian, R.J.: Particle-imaging techniques for experimental fluid-mechanics. Ann. Rev. Fluid Mech. 23, 261–304 (1991)

    Google Scholar 

  190. Cebral, J.R., et al.: Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging. Acad. Radiol. 9(11), 1286–1299 (2002)

    Google Scholar 

  191. Zhao, S.Z., et al.: Comparative study of magnetic resonance imaging and image-based computational fluid dynamics for quantification of pulsatile flow in a carotid bifurcation phantom. Ann. Biomed. Eng. 31(8), 962–971 (2003)

    Google Scholar 

  192. Long, Q., et al.: Quantitative comparison of CFD predicted and MRI measured velocity fields in a carotid bifurcation phantom. Biorheology 39(3–4), 467–474 (2002)

    Google Scholar 

  193. Leuprecht, A., et al.: Combined CFD and MRI study of blood flow in a human ascending aorta model. Biorheology 39(3–4), 425–429 (2002)

    Google Scholar 

  194. Kohler, U., et al.: MRI measurement of wall shear stress vectors in bifurcation models and comparison with CFD predictions. J. Magn. Reson. Imag. 14(5), 563–573 (2001)

    Google Scholar 

  195. Perktold, K., et al.: Validated computation of physiologic flow in a realistic coronary artery branch. J. Biomech. 31(3), 217–228 (1998)

    Google Scholar 

  196. Ford, M.D., et al.: PIV-Measured versus cfd-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J. Biomech. Eng. 130(2), 021015 (2008)

    Google Scholar 

  197. Metcalfe, R.W.: The promise of computational fluid dynamics as a tool for delineating therapeutic options in the treatment of aneurysms. Am. J. Neuroadiol. 24, 553–554 (2003)

    Google Scholar 

  198. Rayz, V.L., et al.: Numerical simulation of pre- and post-surgical flow in a giant basilar aneurysm. J. Biomech. Eng. 130, 021004 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaliy L. Rayz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rayz, V.L., Berger, S.A. (2010). Computational Modeling of Vascular Hemodynamics. In: De, S., Guilak, F., Mofrad R. K., M. (eds) Computational Modeling in Biomechanics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3575-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3575-2_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3574-5

  • Online ISBN: 978-90-481-3575-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics