Skip to main content

Computational Scale Linking in Biological Protein Materials

  • Chapter
  • First Online:
Computational Modeling in Biomechanics
  • 2868 Accesses

Abstract

The properties of biological materials have been the focal point of extensive studies over the past decades, leading to formation of a research field that connects biology, chemistry and materials science at multiple scales, here referred to as “materiomics.” In this chapter we review atomistic based modeling approaches applied to study the scale-dependent mechanical behavior of biological protein materials, in particular focused on their elastic and fracture behavior. Specific examples are provided to illustrate the application of numerical methods that link atomistic scales to mesoscale material properties. We review the formulation of atomistic simulation methods and exemplify its application in several case studies focused on size effects of the fracture behavior of protein materials. These examples illustrate how atomistic scales of molecular structures can be linked to structural levels at length-scales of tens to hundreds of nanometers and micrometers. A study with a simple model of the nuclear lamin network provides a specific example for this coupling of scales, revealing how protein networks with structural defects respond to mechanical load and how the overall behavior relates to the chemical structure of the protein molecule and its hierarchical structural makeup.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dao, M., Lim, C.T., Suresh, S.: Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids. 51(11–12), 2259–2280 (2003)

    Article  Google Scholar 

  2. Bao, G., Suresh, S.: Cell and molecular mechanics of biological materials. Nature Mater. 2(9), 715–725 (2003)

    Article  Google Scholar 

  3. Fratzl, P., Weinkamer, R.: Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007)

    Article  Google Scholar 

  4. Dahl, K.N., Scaffidi, P., Islam, M.F., Yodh, A.G., Wilson, K.L., Misteli, T.: Distinct structural and mechanical properties of the nuclear lamina in Hutchinson-Gilford progeria syndrome. Proc. Nat. Acad. Sci. USA. 103(27), 10271–10276 (2006)

    Article  Google Scholar 

  5. Cross, S.E., Jin, Y.-S., Rao, J., Gimzewski, J.K.: Nanomechanical analysis of cells from cancer patients. Nature Nanotechnol. 2, 780–783 (2007)

    Article  Google Scholar 

  6. Meyers, M.A., Chen, P.Y., Lin, A.Y.M., Seki, Y.: Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 53(1), 1–206 (2008)

    Article  Google Scholar 

  7. Buehler, M.J., Yung, Y.C.: Deformation and failure of protein materials in physiologically extreme conditions and disease. Nature Mater. 8(3), 175–188 (2009)

    Article  Google Scholar 

  8. Buehler, M.J.: Atomistic Modeling of Materials Failure. Springer, New York (2008)

    Book  Google Scholar 

  9. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell. Taylor & Francis (2002)

    Google Scholar 

  10. Buehler, M.J.: Nano- and micromechanical properties of hierarchical biological materials and tissues. J. Mater. Sci. 21(11), 8765–8770 (2007)

    Article  Google Scholar 

  11. Buehler, M.J.: Nature designs tough collagen: Explaining the nanostructure of collagen fibrils. Proc. Nat. Acad. Sci. USA. 103(33), 12285–12290 (2006)

    Article  Google Scholar 

  12. Fratzl, P., Gupta, H.S., Paschalis, E.P., Roschger, P.: Structure and mechanical quality of the collagen-mineral nano-composite in bone. J. Mater. Chem. 14(14), 2115–2123 (2004)

    Article  Google Scholar 

  13. An, K.N., Sun, Y.L., Luo, Z.P.: Flexibility of type I collagen and mechanical property of connective tissue. Biorheology. 41(3–4), 239–246 (2004)

    Google Scholar 

  14. Ramachandran, G.N., Kartha, G.: Structure of collagen. Nature. 176, 593–595 (1955)

    Article  Google Scholar 

  15. Weiner, S., Wagner, H.D.: The material bone: Structure mechanical function relations. Ann. Rev. Mater. Sci. 28, 271–298 (1998)

    Article  Google Scholar 

  16. Courtney, T.H.: Mechanical Behavior of Materials. McGraw-Hill, New York (1990)

    Google Scholar 

  17. Broberg, K.B.: Cracks and Fracture. Academic Press (1990)

    Google Scholar 

  18. Hirth, J.P., Lothe, J.: Theory of Dislocations. Wiley-Interscience (1982)

    Google Scholar 

  19. Currey, J.D.: Bones: Structure and Mechanics. Princeton University Press, Princeton, NJ (2002)

    Google Scholar 

  20. Fraser, P., Bickmore, W.: Nuclear organization of the genome and the potential for gene regulation. Nature. 447(7143), 413–417 (2007)

    Article  Google Scholar 

  21. Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell. 126(4), 677–689 (2006)

    Article  Google Scholar 

  22. Doyle, J.: Rules of engagement. Nature. 446, 860 (2007)

    Article  Google Scholar 

  23. Kitano, H.: Computational systems biology. Nature. 420(6912), 206–210 (2002)

    Article  Google Scholar 

  24. Kitano, H.: Systems biology: A brief overview. Science. 295(5560), 1662–1664 (2002)

    Article  Google Scholar 

  25. Gautieri, A., Vesentini, S., Redaelli, A., Buehler, M.J.: Molecular and mesoscale disease mechanisms of Osteogenesis Imperfecta, Biophysical J. 97(3), 857–865 (2009)

    Article  Google Scholar 

  26. Prockop, D.J., Kivirikko, K.I.: Collagens: molecular biology, diseases, and potentials for therapy. Ann. Rev. Biochem. 64, 403–434 (1995)

    Article  Google Scholar 

  27. Mooney, S.D., Klein, T.E.: Structural models of osteogenesis imperfecta-associated variants in the COL1A1 gene. Mol. Cell. Proteom. 1(9), 868–875 (2002)

    Article  Google Scholar 

  28. Rauch, F., Glorieux, F.H.: Osteogenesis imperfecta. Lancet. 363(9418), 1377–1385 (2004)

    Article  Google Scholar 

  29. Suresh, S., Spatz, J., Mills, J.P., Micoulet, A., Dao, M., Lim, C.T., Beil, M., Seufferlein, T.: Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomaterialia. 1(1), 15–30 (2005)

    Article  Google Scholar 

  30. Smith, B.L., Schaffer, T.E., Viani, M., Thompson, J.B., Frederick, N.A., Kindt, J., Belcher, A., Stucky, G.D., Morse, D.E., Hansma, P.K.: Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature. 399(6738), 761–763 (1999)

    Article  Google Scholar 

  31. Prater, C.B., Butt, H.J., Hansma, P.K.: Atomic force microscopy. Nature. 345(6278), 839–840 (1990)

    Article  Google Scholar 

  32. Sun, Y.L., Luo, Z.P., Fertala, A., An, K.N.: Stretching type II collagen with optical tweezers. J. Biomech. 37(9), 1665–1669 (2004)

    Article  Google Scholar 

  33. Tai, K., Ulm, F.J., Ortiz, C.: Nanogranular origins of the strength of bone. Nano Lett. 11, 2520–2525 (2006)

    Article  Google Scholar 

  34. Lim, C.T., Zhou, E.H., Li, A., Vedula, S.R.K., Fu, H.X.: Experimental techniques for single cell and single molecule biomechanics. Mater. Sci. Eng. C-Biomimetic and Supramol. Syst. 26(8), 1278–1288 (2006)

    Article  Google Scholar 

  35. Goddard, W.A.: A Perspective of Materials Modeling in Handbook of Materials Modeling. In: Yip, S. (ed.). Springer (2006)

    Google Scholar 

  36. Keten, S., Buehler, M.J.: Asymptotic strength limit of hydrogen bond assemblies in proteins at vanishing pulling rates. Phys. Rev. Lett. 1000, 198–301 (2008)

    Google Scholar 

  37. Sasaki, N., Odajima, S.: Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. J. Biomech. 29(9), 1131–1136 (1996)

    Article  Google Scholar 

  38. Buehler, M.J., Wong, S.Y.: Entropic elasticity controls nanomechanics of single tropocollagen molecules. Biophys, J. 93(1), 37–43 (2007)

    Google Scholar 

  39. Gautieri, A., Buehler, M.J., Vesentini, S., Redaelli, A.: Molecular mechanisms of osteogenesis Imperfecta. Protein Sci. 18(1), 161–168 (2009)

    Google Scholar 

  40. Buehler, M.J. (ed.): Hierarchical nanomechanics of collagen fibrils: Atomistic and molecular modeling. In: Fratzl, P. (ed.) Collagen: Structure and Mechanics. Springer, New York (2008)

    Google Scholar 

  41. Buehler, M.J., Keten, S., Ackbarow, T.: Theoretical and computational hierarchical nanomechanics of protein materials: Deformation and fracture. Prog. Mater. Sci. 53(8), 1101–1241 (2008)

    Article  Google Scholar 

  42. van der Rijt, J.A.J., van der Werf, K.O., Bennink, M.L., Dijkstra, P.J., Feijen, J.: Micromechanical testing of individual collagen fibrils. Macromol. Biosci. 6(9), 697–702 (2006)

    Article  Google Scholar 

  43. Eppell, S.J., Smith, B.N., Kahn, H., Ballarini, R.: Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils. J. R. Soc. Interface. 3(6), 117–121 (2006)

    Article  Google Scholar 

  44. Ackbarow, T., Buehler, M.J.: Hierarchical coexistence of universality and diversity controls robustness and multi-functionality in protein materials, Journal of Computational and Theoretical Nanoscience. 5(7), 1193–1204 (2008)

    Article  Google Scholar 

  45. Bell, G.I.: Models for specific adhesion of cells to cells. Science. 200(4342), 618–627 (1978)

    Article  Google Scholar 

  46. Lakes, R.: Materials with structural hierarchy. Nature. 361(6412), 511–515 (1993)

    Article  Google Scholar 

  47. Bustamante, C., Marko, J.F., Siggia, E.D., Smith, S.: Entropic elasticity of lambda-phage DNA. Science. 265(5178), 1599–1600 (1994)

    Article  Google Scholar 

  48. Vashishta, P., Kalia, R.K., Nakano, A.: Large-scale atomistic simulations of dynamic fracture. Comp. Sci. Eng. pp. 56–65 (1999)

    Google Scholar 

  49. Rountree, C.L., Kalia, R.K., Lidorikis, E., Nakano, A., Brutzel, L.v., Vashishta, P.: Atomistic aspects of crack propagation in brittle materials: Multimillion atom molecular dynamics simulations. Ann. Rev. Mater. Res. 32, 377–400 (2002)

    Google Scholar 

  50. Buehler, M.J., Gao, H.J.: Dynamical fracture instabilities due to local hyperelasticity at crack tips. Nature. 439(7074), 307–310 (2006)

    Article  Google Scholar 

  51. Buehler, M.J., Abraham, F.F., Gao, H.: Hyperelasticity governs dynamic fracture at a critical length scale. Nature. 426, 141–146 (2003)

    Article  Google Scholar 

  52. Buehler, M.J., Gao, H.: Ultra large scale atomistic simulations of dynamic fracture in Handbook of Theoretical and Computational Nanotechnology. In: Schommers, W., Rieth, A. (eds.). American Scientific Publishers (ASP) (2006)

    Google Scholar 

  53. Buehler, M.J., Duin, A.C.T.v., Goddard, W.A.: Multi-paradigm modeling of dynamical crack propagation in silicon using the ReaxFF reactive force field. Phys. Rev. Lett. 96(9), 95–505 (2006)

    Google Scholar 

  54. Buehler, M.J., Tang, H., Duin, A.C.T.v., Goddard, W.A.: Threshold crack speed controls dynamical fracture of silicon single crystals. Phys. Rev. Lett. 99, 165–502 (2007)

    Google Scholar 

  55. Wang, W., Donini, O., Reyes, C.M., Kollman, P.A.: Biomolecular simulations: Recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Ann. Rev. Biophys. Biomol. Struct. 30, 211–243 (2001)

    Article  Google Scholar 

  56. Mackerell, A.D.: Empirical force fields for biological macromolecules: Overview and issues. J. Comput. Chem. 25(13), 1584–1604 (2004)

    Article  Google Scholar 

  57. Deniz, A.A., Mukhopadhyay, S., Lemke, E.A.: Single-molecule biophysics: At the interface of biology, physics and chemistry. J. R. Soc. Interface. 5(18), 15–45 (2008)

    Article  Google Scholar 

  58. Scheraga, H.A., Khalili, M., Liwo, A.: Protein-folding dynamics: Overview of molecular simulation techniques. Ann. Rev. Phys. Chem. 58, 57–83 (2007)

    Article  Google Scholar 

  59. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005)

    Article  Google Scholar 

  60. Nelson, M.T., Humphrey, W., Gursoy, A., Dalke, A., Kale, L.V., Skeel, R.D., Schulten, K.: NAMD: A parallel, object oriented molecular dynamics program. Int. J. Supercomput. Appl. High Perform. Comput. 10(4), 251–268 (1996)

    Article  Google Scholar 

  61. MacKerell, A.D., Bashford, D., Bellott, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M.: All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 102(18), 3586–3616 (1998)

    Article  Google Scholar 

  62. Anderson, D.: Collagen self-assembly: A complementary experimental and theoretical perspective. University of Toronto, Toronto, Canada (2005)

    Google Scholar 

  63. Mayo, S.L., Olafson, B.D., Goddard, W.A.: Dreiding – A generic force-field for molecular simulations. J. Phys. Chem. 94(26), 8897–8909 (1990)

    Article  Google Scholar 

  64. Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A., Skiff, W.M.: Uff, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. J. Am. Chem. Soc. 114(25), 10024–10035 (1992)

    Article  Google Scholar 

  65. Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham, T.E., Debolt, S., Ferguson, D., Seibel, G., Kollman, P.: Amber, a package of computer-programs for applying molecular mechanics, normal-mode analysis, molecular-dynamics and free-energy calculations to simulate the structural and energetic properties of molecules. Comput. Phys. Commun. 91(1–3), 1–41 (1995)

    Article  MATH  Google Scholar 

  66. Lu, H., Isralewitz, B., Krammer, A., Vogel, V., Schulten, K.: Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys. J. 75(2), 662–671 (1998)

    Article  Google Scholar 

  67. Buehler, M.J., Gao, H.: Dynamical fracture instabilities due to local hyperelasticity at crack tips. Nature. 439, 307–310 (2006)

    Article  Google Scholar 

  68. Gao, H.: A theory of local limiting speed in dynamic fracture. J. Mech. Phys. Solids. 44(9), 1453–1474 (1996)

    Article  Google Scholar 

  69. Ortiz, V., Nielsen, S.O., Klein, M.L., Discher, D.E.: Unfolding a linker between helical repeats. J. Mol. Biol. 349(3), 638–647 (2005)

    Article  Google Scholar 

  70. Duin, A.C.T.v., Dasgupta, S., Lorant, F., Goddard, W.A.: ReaxFF: A reactive force field for hydrocarbons. J. Phys. Chem. A. 105, 9396–9409 (2001)

    Google Scholar 

  71. Buehler, M.J.: Hierarchical chemo-nanomechanics of stretching protein molecules: Entropic elasticity, protein unfolding and molecular fracture. J. Mech. Mater. Struct. 2(6), 1019–1057 (2007)

    Article  Google Scholar 

  72. Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Ni, B., Sinnott, S.B.: A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Physics-Condensed Matter. 14(4), 783–802 (2002)

    Article  Google Scholar 

  73. Stuart, S.J., Tutein, A.B., Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112(14), 6472–6486 (2000)

    Article  Google Scholar 

  74. Strachan, A., van Duin, A.C.T., Chakraborty, D., Dasgupta, S., Goddard, W.A.: Shock waves in high-energy materials: The initial chemical events in nitramine RDX. Phys. Rev. Lett. 91(9) (2003)

    Google Scholar 

  75. Nielson, K.D., Duin, A.C.T.v., Oxgaard, J., Deng, W., Goddard, W.A.: Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. J. Phys. Chem. A. 109, 49 (2005)

    Google Scholar 

  76. Duin, A.C.T.v., Strachan, A., Stewman, S., Zhang, Q., Xu, X., Goddard, W.A.: ReaxFF SiO: Reactive Force Field for Silicon and Silicon Oxide Systems. J. Phys. Chem. A 107, 3803–3811 (2003)

    Google Scholar 

  77. Han, S.S., van Duin, A.C.T., Goddard, W.A., Lee, H.M.: Optimization and application of lithium parameters for the reactive force field, ReaxFF. J. Phys. Chem. A. 109(20), 4575–4582 (2005)

    Article  Google Scholar 

  78. Chenoweth, K., Cheung, S., van Duin, A.C.T., Goddard, W.A., Kober, E.M.: Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field. J. Am. Chem. Soc. 127(19), 7192–7202 (2005)

    Article  Google Scholar 

  79. Strachan, A., Kober, E.M., van Duin, A.C.T., Oxgaard, J., Goddard, W.A.: Thermal decomposition of RDX from reactive molecular dynamics. J. Chem. Phys. 122(5), 054502 (2005)

    Article  Google Scholar 

  80. Cheung, S., Deng, W.Q., van Duin, A.C.T., Goddard, W.A.: ReaxFF(MgH) reactive force field for magnesium hydride systems. J. Phys. Chem. A. 109(5), 851–859 (2005)

    Article  Google Scholar 

  81. Zhang, L., van Duin, A.C.T., Zybin, S.V., Goddard, W.A.: Thermal decomposition of hydrazines from reactive dynamics using the ReaxFF reactive force field. J. Phys. Chem. B. 113(31), 10770–10778 (2009).

    Article  Google Scholar 

  82. Datta, D., van Duin, A.C.T., Goddard, W.A.: Extending ReaxFF To Biomacromolecules. (Unpublished, 2005)

    Google Scholar 

  83. Buehler, M.J., Dodson, J., Meulbroek, P., Duin, A., Goddard, W.A.: The Computational Materials Design Facility (CMDF): A powerful framework for multiparadigm multi-scale simulations. Mat. Res. Soc. Proc. 894, LL3.8 (2006)

    Google Scholar 

  84. Nielsen, S.O., Ensing, B., Ortiz, V., Moore, P.B., Klein, M.L.: Lipid bilayer perturbations around a transmembrane nanotube: A coarse grain molecular dynamics study. Biophys. J. 88(6), 3822–3828 (2005)

    Article  Google Scholar 

  85. Bond, P.J., Holyoake, J., Ivetac, A., Khalid, S., Sansom, M.S.P: Coarse-grained molecular dynamics simulations of membrane proteins and peptides. J. Struct. Biol. 157(3), 593–605 (2007)

    Google Scholar 

  86. Underhill, P.T., Doyle, P.S.: On the coarse-graining of polymers into bead-spring chains. J. Non-Newtonian Fluid Mech. 122(1–3), 3–31 (2004)

    Article  MATH  Google Scholar 

  87. Nielsen, S.O., Lopez, C.F., Srinivas, G., Klein, M.L.: Coarse grain models and the computer simulation of soft materials. J. Physics-Condensed Matter. 16(15), R481–R512 (2004)

    Article  Google Scholar 

  88. Cieplak, M., Hoang, T.X.: Coarse grained description of protein folding. Phys. Rev. E. 58(3), 3589–3596 (1998)

    Article  Google Scholar 

  89. Bathe, M.: A finite element framework for computation of protein normal modes and mechanical response. Proteins-Struct. Funct. Bioinform. 70(4), 1595–1609 (2008)

    Article  Google Scholar 

  90. Marko, J.F., Siggia, E.D.: Stretching DNA. Macromolecules. 28(26), 8759–8770 (1995)

    Article  Google Scholar 

  91. Bozec, L., de Groot, J., Odlyha, M., Nicholls, B., Nesbitt, S., Flanagan, A., Horton, M.: Atomic force microscopy of collagen structure in bone and dentine revealed by osteoclastic resorption. Ultramicroscopy. 105(1–4), 79–89 (2005)

    Article  Google Scholar 

  92. Guzman, C., Jeney, S., Kreplak, L., Kasas, S., Kulik, A.J., Aebi, U., Forro, L.: Exploring the mechanical properties of single vimentin intermediate filaments by atomic force microscopy. J. Mol. Biol. 360(3), 623–630 (2006)

    Article  Google Scholar 

  93. Yuan, C.B., Chen, A., Kolb, P., Moy, V.T.: Energy landscape of streptavidin-biotin complexes measured by atomic force microscopy. Biochemistry. 39(33), 10219–10223 (2000)

    Article  Google Scholar 

  94. Sun, Y.L., Luo, Z.P., An, K.N.: Stretching short biopolymers using optical tweezers. Biochem. Biophys. Res. Commun. 286(4), 826–830 (2001)

    Article  Google Scholar 

  95. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T., Tasumi, M.: Protein data bank - computer-based archival file for macromolecular structures. J. Mol. Biol. 112(3), 535–542 (1977)

    Article  Google Scholar 

  96. Kolano, C., Helbing, J., Kozinski, M., Sander, W., Hamm, P.: Watching hydrogen-bond dynamics in a beta-turn by transient two-dimensional infrared spectroscopy. Nature. 444(7118), 469–472 (2006)

    Article  Google Scholar 

  97. Gosline, J., Lillie, M., Carrington, E., Guerette, P., Ortlepp, C., Savage, K.: Elastic proteins: biological roles and mechanical properties. Philos. Trans. R. Soc. Lond. B-Biol. Sci. 357(1418), 121–132 (2002)

    Article  Google Scholar 

  98. Keten, S., Buehler, M.J.: Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale. Nano Lett. 8(2), 743–748 (2008)

    Article  Google Scholar 

  99. Keten, S., Buehler, M.J.: Strength limit of entropic elasticity in beta-sheet protein domains. Phys. Rev. E. 78, 061913 (2008)

    Article  Google Scholar 

  100. Yip, S.: The strongest size. Nature. 391, 532–533 (1998)

    Article  Google Scholar 

  101. Wolf, D., Yamakov, V., Phillpot, S.R., Mukherjee, A.K.: Deformation mechanism and Inverse Hall-Petch behavior in nanocrystalline materials. Z. Metallk. 94, 1052–1061 (2003)

    Google Scholar 

  102. Penel, S., Morrison, R.G., Dobson, P.D., Mortishire-Smith, R.J., Doig, A.J.: Length preferences and periodicity in beta-strands. Antiparallel edge beta-sheets are more likely to finish in non-hydrogen bonded rings. Protein Eng. 16(10), 957–961 (2003)

    Google Scholar 

  103. Schiotz, J., Jacobsen, K.W.: A maximum in the strength of nanocrystalline copper. Science. 301(5638), 1357–1359 (2003)

    Article  Google Scholar 

  104. Ackbarow, T., Buehler, M.J.: Nanopatterned protein domains unify strength and robustness through hierarchical structures. Nanotechnology. 20, paper # 075103 (2009)

    Google Scholar 

  105. Ackbarow, T., Chen, X., Keten, S., Buehler, M.J.: Hierarchies, multiple energy barriers and robustness govern the fracture mechanics of alpha-helical and beta-sheet protein domains. Proc. Nat. Acad. Sci. USA. 104, 16410–16415 (2007)

    Article  Google Scholar 

  106. Zhao, Q., Cranford, S., Ackbarow, T., Buehler, M.J.: Robustness-strength performance of hierarchical alpha-helical protein filaments. Int. J. Appl. Mech. 1(1), 85–112 (2009)

    Article  Google Scholar 

  107. Ackbarow, T. Sen, D., Thaulow, C., Buehler, M.J.: Alpha-Helical Protein Networks are Self Protective and Flaw Tolerant, PLoS ONE. 4(6), paper # e6015 (2009)

    Google Scholar 

  108. Aebi, U., Cohn, J., Buhle, L., Gerace, L.: The nuclear lamina is a meshwork of intermediate-type filaments. Nature. 323(6088), 560–564 (1986)

    Article  Google Scholar 

  109. Ackbarow, T., Buehler, M.J.: Superelasticity, energy dissipation and strain hardening of vimentin coiled-coil intermediate filaments: Atomistic and continuum studies. J. Mater. Sci 42(21), 8771–8787 (2007)

    Article  Google Scholar 

  110. Buehler, M.J., Keten, S.: Elasticity, strength and resilience: A comparative study on mechanical signatures of α-helix, β-sheet and tropocollagen domains. Nano Res. 1(1), 63–71 (2008)

    Article  Google Scholar 

  111. Buehler, M.J., Ackbarow, T.: Fracture mechanics of protein materials. Mater. Today. 10(9), 46–58 (2007)

    Article  Google Scholar 

  112. Langer, R., Tirrell, D.A.: Designing materials for biology and medicine. Nature. 428(6982), 487–492 (2004)

    Article  Google Scholar 

  113. Zhao, X.J., Zhang, S.G.: Designer self-assembling peptide materials. Macromol. Biosci. 7(1), 13–22 (2007)

    Article  Google Scholar 

  114. Holland, J.H.: Hidden Order – How Adaptation Builds Complexity. Helix Books, Reading, MA (1995)

    Google Scholar 

  115. Cui, X.Q., Li, C.M., Zang, J.F., Zhou, Q., Gan, Y., Bao, H.F., Guo, J., Lee, V.S., Moochhala, S.M.: Biocatalytic generation of ppy-enzyme-CNT nanocomposite: From network assembly to film growth. J. Phys. Chem. C. 111(5), 2025–2031 (2007)

    Article  Google Scholar 

  116. Hule, R.A., Pochan, D.J.: Polymer nanocomposites for biomedical application. MRS Bull. 32(4), 5 (2007)

    Google Scholar 

  117. Winey, K.I., Vaia, R.A.: Polymer nanocomposites. MRS Bull. 32(4), 5 (2007)

    Google Scholar 

  118. Petka, W.A., Harden, J.L., McGrath, K.P., Wirtz, D., Tirrell, D.A.: Reversible hydrogels from self-assembling artificial proteins. Science. 281(5375), 389–392 (1998)

    Article  Google Scholar 

  119. Smeenk, J.M., Otten, M.B.J., Thies, J., Tirrell, D.A., Stunnenberg, H.G., van Hest, J.C.M.: Controlled assembly of macromolecular beta-sheet fibrils. Angewandte Chemie-International Edition. 44(13), 1968–1971 (2005)

    Article  Google Scholar 

  120. Zhao, X.J., Zhang, S.G.: Molecular designer self-assembling peptides. Chem. Soc. Rev. 35(9), 1105–1110 (2006)

    Article  Google Scholar 

  121. Mershin, A., Cook, B., Kaiser, L., Zhang, S.G.: A classic assembly of nanobiomaterials. Nature Biotechnol. 23(9), 1379–1380 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Army Research Office (ARO), grant number W911NF-06-1-0291 (program officer Dr. Bruce LaMattina), and by a National Science Foundation CAREER Award (CMMI-0642545, program officer Dr. Jimmy Hsia). Further support from the Air Force Office of Scientific Research and DARPA is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus J. Buehler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Buehler, M.J. (2010). Computational Scale Linking in Biological Protein Materials. In: De, S., Guilak, F., Mofrad R. K., M. (eds) Computational Modeling in Biomechanics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3575-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3575-2_17

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3574-5

  • Online ISBN: 978-90-481-3575-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics