Skip to main content

Interactive Surgical Simulation Using a Meshfree Computational Method

  • Chapter
  • First Online:
Computational Modeling in Biomechanics

Abstract

Interactive medical simulations are rapidly gaining in popularity as attractive alternatives to traditional techniques of training fine motor skills, as in surgery. The generation of multimodal virtual environments for surgical training is complicated by the necessity to develop heterogeneous simulation scenarios involving the interaction of surgical tools with soft biological tissues in real time. While several techniques ranging from rapid but nonphysical geometry-based procedures to complex but computationally inefficient schemes have been proposed, none is uniquely suited to solve the problem. In this chapter we discuss the challenges facing the field of realistic surgery simulation and present a novel point-associated finite field (PAFF) approach, developed specifically to cope with these challenges. Based upon the equations of motion, this technique is utilized to perform discretization based only on a set of nodal points, circumventing the generation of a finite element mesh. Approximation functions based on the moving least squares technique are used in conjunction with a point collocation scheme. We propose several specializations of this scheme for linear as well as nonlinear problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basdogan, C., De, S., Kim, J., Manivannan, M., Srinivasan, M.A.: The role of haptics in medical simulations. IEEE Comput. Graph. Appl. 24(2), 56–64 (2004)

    Article  Google Scholar 

  2. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid models. SIGGRAPH Proc. Comput. Graph. 20(4), 151–160 (1986)

    Article  Google Scholar 

  3. Hsu, W.M., Hughes, W.M., Kaufman, H.: Direct manipulation of free-form deformations. SIGGRAPH Proc. Comput. Graph. 26(2), 177–184 (1992)

    Article  Google Scholar 

  4. Basdogan, C., Ho, C., Srinivasan, M.A.: Force interaction in laparoscopic simulation haptic rendering of soft tissue. In: Proceeding of MMVR’6 Conference (1998)

    Google Scholar 

  5. Gupta, R., Sheridan, T., Whitney, D.: Experiments using multimodal virtual environments in design for assembly analysis. Presence: Teleoperators and Virtual Environ. 6(3), 318–338 (1997)

    Google Scholar 

  6. Gregory, A., Ehmann, S., Lin, M.: In touch: Interactive multiresolution modeling and 3D painting with a haptic interface. In: Proceedings of IEEE Virtual Reality 2000, pp. 45–54 (2000)

    Google Scholar 

  7. Jayaram, S., Vance, J., Gadh, R., Jayaram, U., Srinivasan, H.: Engineering applications of virtual reality environments. ASME Trans. J. Comput. Inf. Sci. Eng. 1(1), 72–83 (2001)

    Article  Google Scholar 

  8. Dachille, F., Qin, H., Kaufman, A., El-sana, J.: Haptic sculpting of dynamics surfaces. ACM Symp. Interact. 3D Graph. 4, 103–110 (1999)

    Google Scholar 

  9. Edwards, J., Luecke, G.: Physically based models for use in a force feedback virtual environment. In: Japan/USA Symposium on Flexible Automation (ASME), pp. 221–228 (1996)

    Google Scholar 

  10. Witkin, A., Baraff, D., Kass, M.: Tutorial notes on “An introduction to physically-based modeling”. In: Proceedings of the SIGGRAPH (1996)

    Google Scholar 

  11. Cover, S.A., Ezquerra, N.F., O’Brien, J.F., Rowe, R., Gadacz, T., Palm, E.: Interactively deformable models for surgery simulation. IEEE Comput. Graph. Appl. 13(6), 68–75 (1993)

    Article  Google Scholar 

  12. Terzopoulos, D., Waters, K.: Physically-based facial modeling, analysis and animation. J. Vis. Comput. Anim. 1, 73–80 (1990)

    Google Scholar 

  13. Ng, H., Grimsdale, R.: Computer graphics techniques for modeling cloth. IEEE Comput. Graph. Appl. 16(5), 91–108 (1996)

    Article  Google Scholar 

  14. Swarup, N.: Haptic interaction with deformable objects using real-time dynamic simulation. Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA (1995)

    Google Scholar 

  15. Desbrun, M., Schroder, P., Barr, A.: Interactive animation of structured deformable objects. Graph. Interface. 99, 1–8 (1999)

    Google Scholar 

  16. Kang, Y., Choi, J., Cho, C.: Fast and stable animation of cloth with an approximated implicit method. In: Proceedings of Computer Graphics International (2000)

    Google Scholar 

  17. Bro-Nielsen, M., Cotin, S.: Real-time volumetric deformable models for surgery simulation using finite elements and condensation. Comput. Graph. Forum. 15(3), 57–66 (Eurographics’96) (1996)

    Google Scholar 

  18. Cotin, S., Delingette, H., Ayache, N.: Real time elastic deformations of soft tissues for surgery simulation. IEEE Trans. Vis. Comput. Graph. 5(1), 62–73 (1999)

    Article  Google Scholar 

  19. Girod, B., Keeve, E., Girod, S.: Craniofacial surgery simulation. In: Proceedings of the 4th Conference on Visualization in Biomedical Computing (VBC’96), Hamburg, Germany, pp. 541–548 (1996)

    Google Scholar 

  20. Ayache, N., Cotin, S., Delingette, H.: Surgery simulation with visual and haptic feedback. In: Robotics Research, pp. 311–316. Springer, Santa Clara (1998)

    Google Scholar 

  21. Berkley, J., Oppenheimer, P., Weghorst, W., Berg, D., Raugi, G., Haynor, D., Ganter, M., Brooking, C., Turkiyyah, G.: Creating fast finite element models from medical images. In: Proceeding of MMVR’8 Conference, Irvine, CA, pp. 26–32 (2000)

    Google Scholar 

  22. Berkley, H., Turkiyyah, G., Berg, D., Ganter, M., Weghorst, S.: Real-time finite element modeling for surgery simulation: An application to virtual suturing. IEEE Trans. Vis. Comput. Graph. 10(3), 314–325 (2004)

    Article  Google Scholar 

  23. De, S., Srinivasan, M.A.: Thin walled models for haptic and graphical rendering of soft tissues in surgical simulations. In: Proceeding of MMVR’7 Conference, San Francisco, CA (1999)

    Google Scholar 

  24. Basdogan, C., Ho, C., Srinivasan, M.A.: Virtual environments in medical training: Graphical and haptic simulation of laparoscopic common bile duct exploration. IEEE/ASME Trans. Mechatronics. 6(3), 269–285 (2001)

    Article  Google Scholar 

  25. Wu, X., Downes, M., Goktekin, T., Tendick, F.: Adaptive nonlinear finite elements for deformable body simulation using dynamic progressive meshes. Proc. Eurograph. 20, 349–358 (2001)

    Google Scholar 

  26. Picinbono, G., Delingette, H., Ayache, N.: Non-linear anisotropic elasticity for real-time surgery simulation. Graph. Models. 65(5), 305–321 (2003)

    Article  MATH  Google Scholar 

  27. Masutani, Y., Inoue, Y., Ishii, K., Kumai, N., Kimura, F., Sakuma, I.: Development of surgical simulator based on FEM and deformable volume-rendering. Proc. SPIE, 5367, 500–507 (2004)

    Article  Google Scholar 

  28. Choi, K.S., Sun, H., Heng, P.A.: Deformable simulation using force propagation model with finite element optimization. Comput. Graph. 28(4), 559–568 (2004)

    Article  Google Scholar 

  29. James, D., Pai, D.K.: ArtDefo, accurate real time deformable objects. In: Computer Graphics (ACM SIGGRAPH 99 Conference Proceedings), pp. 65–72 (1999)

    Google Scholar 

  30. De, S., Lim, Y.J., Muniyandi, M., Srinivasan, M.A.: Physically realistic virtual surgery using the point-associated finite field (PAFF) approach. Presence: Teleoperators and Virtual Environ. 15(3), 294–308 (2006)

    Article  Google Scholar 

  31. Bathe, K.J.: Finite Element Procedures. Prentice-Hall, Upper Saddle River, NJ (1996)

    Google Scholar 

  32. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  33. Surdick, R, Davis, E, King, R., Hodges, L: The perception of distance in simulated visual displays: A comparison of the effectiveness and accuracy of multiple depth cues across viewing distances. Presence: Teleoperators and Virtual Environ. 6(5), 513–531 (1997)

    Google Scholar 

  34. Lim, Y.J., De, S.: Nonlinear tissue response modeling for physically realistic virtual surgery using PAFF. In: World Haptics 2005 Conference (2005)

    Google Scholar 

  35. Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues, 2nd edn. Springer, New York (1993)

    Google Scholar 

  36. Lim, Y.J., De, S.: Real time simulation of nonlinear tissue response in virtual surgery using the point collocation-based method of finite spheres. Comput. Methods in Appl. Mech. Eng. 196(31–32), 3011–3024 (2007)

    Article  MATH  Google Scholar 

  37. Ackermann, M.J.: The Visible Human Project. Available: www.nlm.nih.gov (1995)

  38. Debunne, G., Desbrun, M., Cani, M., Barr, A.H.: Dynamic real-time deformations using space & time adaptive sampling. In: Proceedings of the 28th Annual Conference on Computer Graphics and interactive Techniques SIGGRAPH ’01, pp. 31–36. ACM Press, New York (2001)

    Google Scholar 

  39. Sedef, M., Samur, E., Basdogan, C.: Real-time finite-element simulation of linear viscoelastic tissue behavior based on experimental data. IEEE Comput. Graph. Appl. 26(6), 58–68 (2006)

    Article  Google Scholar 

  40. Schoner, J.L., Lang, J., Seidel, H.P.: Measurement-based interactive simulation of viscoelastic solids. Comput. Graph. Forum. 23(3), 547–556 (2004)

    Article  Google Scholar 

  41. Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. Society for Industrial and Applied Mathematic (SIAM), Philadelphia, PA (2005)

    Google Scholar 

  42. Freund, R.W.: Krylov-subspace methods for reduced-order modeling in circuit simulation. J. Comput. Appl. Math. 123(1–2), 395–421 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  43. Rudnyi, E.B., Korvink, J.G.: Review: Automatic model reduction for transient simulation of MEMS-based devices. Sensors Update. 11(1), 3–33 (2002)

    Article  Google Scholar 

  44. Feldmann, P., Freund, R.W.: Efficient linear circuit analysis by Pade’ approximation via the Lanczos process. In: Proceedings of the Conference on European Design Automation (Grenoble, France), European Design Automation Conference, pp. 170–175. IEEE Computer Society Press, Los Alamitos, CA (1994)

    Google Scholar 

  45. Freund, R.W., Feldmann, P.: Reduced-order modeling of large passive linear circuits by means of the SYPVL algorithm. In: Proceedings of the 1996 IEEE/ACM international Conference on Computer-Aided Design, San Jose, CA, pp. 280–287. International Conference on Computer Aided Design, IEEE Computer Society, Washington, DC (1996)

    Google Scholar 

  46. Kamon, M., Wang, F., White, J.: Generating nearly optimally compact models from krylov-subspace based reduced-order models. IEEE Trans. Circuits and Syst. -II: Analog and Digit. Signal Process. 47(4), 239–248 (2000)

    Article  Google Scholar 

  47. Moore, B.: Principal component analysis in linear systems controllability, observability and model reduction. IEEE Trans. Automatic Control. 26(1), 17–32 (1981)

    Article  MATH  Google Scholar 

  48. Penzl, T.: Numerical solution of generalized Lyapunov equations. Adv. Comput. Math. 8(1), 33–48 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  49. Tombs, M.S., Postlethwaite, I.: Truncated balanced realization of a stable nonminimal state space system. Int. J. Control. 46(4), 1319–1330 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  50. Li, J.R.: Model reduction of large linear systems via low rank system Gramians. Ph.D. thesis, Department of Mathematics, Massachusetts (2000)

    Google Scholar 

  51. Simo, J.C., Hughes, T.: Computational Inelasticity. Springer, New York (2004)

    Google Scholar 

  52. Taylor, R.L., Pister, K.S., Goudreau, G.L.: Thermomechanical analysis of viscoelastic solids. Int. J. Numerical Methods in Eng. 2(1), 45–59 (1970)

    Article  MATH  Google Scholar 

  53. Banihani, S., De, S.: A comparison of some model order reduction methods for fast simulation of soft tissue response using the point collocation-based method of finite spheres (PCMFS). Eng. Comput. 25(1), 37–47 (2009)

    Article  Google Scholar 

  54. Zhou, K., Doyle, J., Glover, K.: Robust and Optimal Control. Prentice-Hall, Englewood Cliffs, NJ (1995)

    Google Scholar 

  55. Maciel, A., De, S.: An efficient dynamic point algorithm for line-based collision detection in real time virtual environments involving haptics. Comput. Anim. Virtual Worlds. 19, 151–163 (2008)

    Article  Google Scholar 

  56. Liu, Y., De, S.: CUDA-based real time surgical simulation. Medicine Meets Virtual Reality 16 (2008)

    Google Scholar 

  57. Lim, Y.J., Jin, W., De, S.: On some recent advances in multimodal surgery simulation: A hybrid approach to surgical cutting and the use of video images for enhanced realism. Presence: Teleoperators and Virtual Environ. 16(6), 563–583 (2007)

    Article  Google Scholar 

  58. Maciel, A., De, S.: Physics-based real time laparoscopic electrosurgery simulation. Medicine Meets Virtual Reality 16 (2008)

    Google Scholar 

  59. Lim, Y.J., Deo, D., Singh, T.P., Jones, D.B., De, S.: In situ measurement and modeling of biomechanical response of human cadaveric soft tissues for use in physics-based laparoscopic surgical simulation. Surg. Endosc. 24 (2008)

    Google Scholar 

  60. Sankaranarayanan, G., Sreekanth, V.A., Lin, H., Jones, D.B., Cao, C., De, S.: Face and construct validation of the virtual basic laparoscopic skill trainer (VBLaST). J. Laparoendoscopic and Adv. Surg. Tech. (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvranu De .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

De, S., Lim, YJ. (2010). Interactive Surgical Simulation Using a Meshfree Computational Method. In: De, S., Guilak, F., Mofrad R. K., M. (eds) Computational Modeling in Biomechanics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3575-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3575-2_14

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3574-5

  • Online ISBN: 978-90-481-3575-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics