Skip to main content

Computational Modeling of Extravascular Flow in Bone

  • Chapter
  • First Online:
Computational Modeling in Biomechanics

Abstract

The resident cells of bone tissue are the micromachines responsible for maintaining and adapting the tissue structure to meet needs associated with bone’s dynamic, physiologic function. Mechanical load induced extravascular fluid flow provides the mechanical and chemical signals that modulate bone cell activity. However, the mechanisms by which cell scale processes are translated to functional adaptation at the organ scale are not clear. Predictive multi-scale models provide a means to test virtually the effects of specific model parameters, increasing efficiency and speeding the discovery of mechanisms underlying functional adaptation. This chapter reviews top-down computational modeling approaches to predict the interplay between mechanical loading of bone, load-driven fluid flow, and associated augmentation of molecular transport within bone. As underscored in recent studies, typically applied idealizations in geometry, as well as spatial distribution (anisotropy) and material properties of cells and tissues, deteriorate the fidelity of extravascular flow predictions. For example, idealization of pericellular fluid space geometries causes orders of magnitude underprediction of stresses imparted by fluid drag on cell surfaces. New, bottom-up approaches will help to elucidate the mechanical and chemical signals comprising the mechanophysiological environment of bone at multiple length scales, which is key to understanding mechanotransduction and how cells adapt bone tissue in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Interestingly, the diffusion constant for water in the pores of the bone matrix has recently been measured in rabbit bone to be on the order of \(3 \times 1{0}^{-7}\,{\mathrm{cm}}^{2}/\mathrm{s}\) [17]. The measured diffusion coefficient for rabbit bone is an order of magnitude higher than our estimate, but it does not alter the validity of the theoretical model. In addition, diffusion coefficients in human cortical bone are likely to be significantly less than those in rabbit or rat bone due to human cortical bone’s compact and osteonal structure (After [31, 34]).

References

  1. Aarden, E.M., Burger, E.H., Nijweide, P.J.: Function of osteocytes in bone. J. Cell Biochem. 55, 287–299 (1994)

    Article  Google Scholar 

  2. Almekinders, L.C., Banes, A.J., Ballenger, C.A.: Effects of repetitive motion on human fibroblasts. Med. Sci. Sport. Exer. 25, 603–607 (1993)

    Google Scholar 

  3. Anderson, E.J., Knothe Tate, M.L.: Measuring permeability of bone in the lacunocanalicular network via scaled physical models. Trans. BMES.: 1216 (2004)

    Google Scholar 

  4. Anderson, E.J., Kaliyamoorthy, S., Alexander, J.I.D, Knothe Tate, M.L.: Nano-microscale models of periosteocytic flow show differences in stresses imparted to cell body and processes. Ann. Biomed. Eng. 33(1), 52–62 (2005)

    Google Scholar 

  5. Anderson, E.A., Kreuzer, S.M., Small, O., Knothe Tate, M.L.: Pairing computational and scaled physical models to determine permeability as a measure of cellular communication in micro- and nano-scale pericellular spaces. Microfluid. Nanofluid. 4, 193–204 (2008)

    Google Scholar 

  6. Anderson, E.A., Knothe Tate, M.L.: The idealization of pericellular fluid space geometry and dimension results in a profound underprediction of nano-microscale stresses imparted by fluid drag on osteocytes. J. Biomech. 41(8), 1736–1746 (2008)

    Google Scholar 

  7. Bassett, C.A.L.: Electromechanical factors regulating bone architecture. In: Fleisch, H., Blackwood, H.J.J, Owen, M. (eds.) Third European Symposium on Calcified Tissues, pp. 78–89. Springer, New York (1966)

    Google Scholar 

  8. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

    Article  Google Scholar 

  9. Bridgman, P.: Dimensional Analysis. Yale University Press, New Haven (1922)

    Google Scholar 

  10. Brookes, M., Revell, W.: Blood Supply of Bone. Scientific Aspects, pp. 109–141. Springer, New York (1998)

    Google Scholar 

  11. Cooper, R.R., Milgram, J.W., Robinson, R.A.: Morphology of the osteon. An electron microscopic study. J. Bone Joint Surg. Am. 48, 1239–1271 (1966)

    Google Scholar 

  12. Copenhaver, W.M., Bunge, R.P., Bunge, M.B. (eds.): Bailey’s Textbook of Histology, pp. 122–123. Williams and Wilkins Company, Baltimore (1964)

    Google Scholar 

  13. Donahue, H.J.: Gap junctions and biophysical regulation of bone cell differentiation. Bone 26, 417–422 (2000)

    Article  Google Scholar 

  14. Doty, S.B.: Morphological evidence of gap junctions between bone cells. Calcif. Tiss. Int. 33, 509–512 (1981)

    Article  Google Scholar 

  15. Einstein, A.: Elementare Betrachtungen über die thermische Molekularbewegung in festen Körpern. Ann. Phys. 35, 679–694 (1911)

    Google Scholar 

  16. Fasano, M., Curry, S., Terreno, E., Galliano, M., Fanali, G., Narciso, P., Notari, S., Ascenzi, P.: The extraordinary ligand binding properties of human serum albumin. IUBMB Life 57(12), 787–796 (2005)

    Article  Google Scholar 

  17. Fernández-Seara, M.A., Wehrli, S.L., Takahashi, M., Wehrli, F.W.: Water content measured by proton-deuteron exchange NMR predicts bone mineral density and mechanical properties. J. Bone Min. Res. 19, 289–296 (2004)

    Article  Google Scholar 

  18. Fritton, S.P., McLeod, K.J., Rubin, C.T.: Quantifying the strain history of bone: Spatial uniformity and self-similarity of low-magnitude strains. J. Biomech. 33(3), 317–325 (2000)

    Article  Google Scholar 

  19. Gong, J.K., Arnold, J.S., Cohen, S.H.: Composition of trabecular and cortical bone. Anat. Rec. 149, 325–332 (1964)

    Article  Google Scholar 

  20. Goodhill, G.J.: Diffusion in axon guidance. Eur. J. Neurosci. 9, 1414–1412 (1997)

    Article  Google Scholar 

  21. Goodhill, G.J.: Mathematical guidance for axons. Trends Neurosci. 21, 226–231 (1998)

    Article  Google Scholar 

  22. Goodship, A.E., Lanyon, L.E., McFie, H.: Functional adaptation of bone to increased stress. An experimental study. J. Bone Joint Surg. Am. 61, 539–546 (1979)

    Google Scholar 

  23. Guilak, F., Ratcliffe, A., Mow, V.C.: Chondrocyte deformation and local tissue strain in articular cartilage: A confocal microscopy study. J. Orthop. Res. 13(3), 410–421 (1995)

    Article  Google Scholar 

  24. Guo, E.: Mechanical properties of cortical bone and cancellous bone tissue. In: Cowin, S.C. (ed.) Bone Mechanics Handbook. CRC Press, Boca Raton, FL (2001)

    Google Scholar 

  25. Han, Y., Cowin, S.C., Schaffler, M.B., Weinbaum, S.: Mechanotransduction and strain amplification in osteocyte cell processes. Proc. Nat. Acad. Sci. 101, 16689–16694 (2004)

    Article  Google Scholar 

  26. Helle, H.B., Bhatt, A., Ursin, B.: Porosity and permeability prediction from wireline logs using artificial neural networks: A North Sea case study. Geophys. Prospect. 49(4), 431–444 (2001)

    Article  Google Scholar 

  27. Kanis, J.A.: A Textbook of Osteoporosis, pp. 11–12. Blackwell Science, Oxford/Cambridge, MA (1996)

    Google Scholar 

  28. Klein-Nulend, J., van der Plas, A., Semeins, C.M., Ajubi, N.E., Frangos, J.A., Nijweide, P.J., Burger, E.H.: Sensitivity of osteocytes to biomechanical stress in vitro. Fed. Am. Soc. Exp. Biol. 9, 441–445 (1995)

    Google Scholar 

  29. Knapp, H.F., Reilly, G.C., Stemmer, A., Niederer, P., Knothe Tate, M.L.: Development of preparation methods for and insights obtained from atomic force microscopy of fluid spaces in cortical bone. Scanning 24(1), 25–33 (2002)

    Google Scholar 

  30. Knothe Tate, M.L.: Diffusive and convective transport in the osteon. M.S. thesis, Divisions of Applied Mechanics and Engineering Design, Department of Mechanical and Process Engineering, Institute of Biomedical Engineering and Medical Informatics, Swiss Federal Institute of Technology, Zurich (1994)

    Google Scholar 

  31. Knothe Tate, M.L.: Theoretical and experimental study of load-induced fluid flow phenomena in compact bone. Ph.D. thesis, Mechanical and Biomedical Engineering, Swiss Federal Institute of Technology, Zurich (1997)

    Google Scholar 

  32. Knothe Tate, M.L., Niederer, P.: A theoretical FE-based model developed to predict the relative contribution of convective and diffusive transport mechanisms for the maintenance of local equilibria within cortical bone. In: Clegg, S. (ed.) Advances in Heat and Mass Transfer in Biotechnology. Am. Soc. Mech. Eng. HTD 362/BED 40, 133–142 (1998)

    Google Scholar 

  33. Knothe Tate, M.L., Niederer, P., Knothe, U.: In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading. Bone 22(2), 107–117 (1998a)

    Article  Google Scholar 

  34. Knothe Tate, M.L., Knothe, U., Niederer, P.: Experimental elucidation of mechanical load-induced fluid flow and its role in bone metabolism and functional adaptation. Am. J. Med. Sci. 316(3), 189–195 (1998b)

    Article  Google Scholar 

  35. Knothe Tate, M.L., Knothe, U.: An ex vivo model to study transport processes and fluid flow in loaded bone. J. Biomech. 33(2), 247–254 (2000)

    Article  Google Scholar 

  36. Knothe Tate, M.L., Steck, R., Forwood, M.R., Niederer, P.: In vivo demonstration of load-induced fluid flow in the rat tibia and its potential implications for processes associated with functional adaptation. J. Exp. Biol. 203(18), 2737–2745 (2000)

    Google Scholar 

  37. Knothe Tate, M.L.: Interstitial fluid flow. In: Cowin, S.C. (ed.) Bone Biomechanics Handbook, Chap. 22, pp. 1–29. CRC Press, New York (2001)

    Google Scholar 

  38. Knothe Tate, M.L.: Invited review article: “Whither flows the fluid in bone?”: An Osteocyte’s perspective. J. Biomech. 36(10), 1409–1424 (2003)

    Google Scholar 

  39. Knothe Tate, M.L., Adamson, J.R., Tami, A.E., Bauer, T.W.: Invited review article: Cells in focus – The Osteocyte. Int. J. Biochem. Cell Biol. 36(1), 1–8 (2004)

    Article  Google Scholar 

  40. Knothe Tate, M.L., Tami, A.E.G., Bauer, T.W., Knothe, U.: Micropathoanatomy of Osteoporosis – Indications for a cellular basis of bone disease. Adv. Osteoporotic Fract. Manage. 2(1), 9–14 (2002)

    Google Scholar 

  41. Knothe Tate, M.L. Multi-scale computational engineering of bones: State of the art insights for the future. In: Bronner, F., Farach-Carson, C., Mikos, A. (eds.) Engineering of Functional Skeletal Tissues, Chap. 10. Springer, London, 10, 141–160 (2007)

    Google Scholar 

  42. Knothe Tate, M.L., Steck, R., Anderson, E.J.: Bone as an inspiration for a novel class of mechanoactive materials. Biomaterials 30, 133–140 (2009)

    Article  Google Scholar 

  43. Kreuzer, S.M., Anderson, E.J., Knothe Tate, M.L.: The presence of cellular and subcellular structures dominate permeability predictions in the lacunocanalicular (pericellular) system of bone, pp. 1–77. 2005 ASME Summer Bioengineering Conference, Vail, CO (2005)

    Google Scholar 

  44. Maroudas, A.: Biophysical chemistry of cartilaginous tissues with special reference to solute and fluid transport. Biorheology 12, 233–248 (1972)

    Google Scholar 

  45. Massagué, J.: The transforming growth-factor-beta family. Ann. Rev. Cell Biol. 6, 597–641 (1990)

    Article  Google Scholar 

  46. McGarry, J.G., Klein-Nulend, J., Mullender, M.G., Prendergast, P.J.: A comparison of strain and fluid shear stress in stimulating bone cell responses – a computational and experimental study. Fed. Am. Soc. Exp. Biol. 19, 482–484 (2005)

    Google Scholar 

  47. Mishra, S., Knothe Tate, M.L.: Effect of lacunocanalicular architecture on hydraulic conductance in bone tissue: Implications for bone health and evolution. Anat. Rec. 273A(2), 752–762 (2003)

    Google Scholar 

  48. Nicolella, D.P., Moravits, D.E., Gale, A.M., Bonewald, L.F., Lankford, J.: Osteocyte lacunae tissue strain in cortical bone. J. Biomech. 39, 1735–1743 (2006)

    Article  Google Scholar 

  49. Owan, I., Burr, D.B., Turner, C.H., Qiu, J., Tu, Y., Onyia, J.E., Duncan, R.L.: Mechanotransduction in bone: Osteoblasts are more responsive to fluid forces than mechanical strain. Am. J. Physiol. 273: C810–C815 (1997)

    Google Scholar 

  50. Pienkowski, D., Pollack, S.R.: The origin of stress-generated potentials in fluid-saturated bone. J. Orthopaedic Res. 1: 30–41 (1983)

    Article  Google Scholar 

  51. Piekarski, K., Munro, M.: Transport mechanism operating between blood supply and osteocytes in long bones. Nature 269, 80–82 (1977)

    Article  Google Scholar 

  52. Polig, E., Jee, W.S.: A model of osteon closure in cortical bone. Calcif. Tissue Int. 47, 261–269 (1990)

    Article  Google Scholar 

  53. Reich, K.M., Frangos, J.A.: Effect of flow on prostaglandin E2 and inositol triphosphate levels in osteoblasts. Am. J. Physiol. 261, C428–C432 (1991)

    Google Scholar 

  54. Reilly, G., Knapp, H., Stemmer, A., Niederer, P., Knothe Tate, M.L.: Investigation of the lacunocanalicular system of cortical bone using atomic force microscopy. Ann. Biomed. Eng. 29(12), 1074–1081 (2001)

    Google Scholar 

  55. Remaggi, F., Cane, V., Palumbo, C., Ferretti, M.: Histomorphometric study in the osteocyte lacuno-canalicular network in animals of different species. I. Woven-fibered and parallel-fibered bones. Ital. J. Anat. Embryol. 103(4), 145–155 (1998)

    Google Scholar 

  56. Rensberger, J.M., Watabe, M.: Fine structure of bone in dinosaurs, birds and mammals. Nature 406, 619–622 (2000)

    Article  Google Scholar 

  57. Rubin, C.T., Lanyon, L.E.: Regulation of bone formation by applied dynamic loads. J. Bone Joint Surg. Am. 66, 397–402 (1984)

    Google Scholar 

  58. Smalt, R., Mitchell, F.T., Howard, R.L., Chambers, T.J.: Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain. Am. J. Physiol. 273, E751–E758 (1997)

    Google Scholar 

  59. Steck, R., Niederer, P., Knothe Tate, M.L.: A Finite Difference model of load-induced fluid displacements within bone under mechanical loading. Med. Eng. Phys. 22, 117–125 (2000)

    Google Scholar 

  60. Steck, R., Niederer, P., Knothe Tate, M.L.: A finite element analysis for the prediction of load-induced fluid flow and mechanochemical transduction in bone. J. Theor. Biol. 220(2), 249–259 (2003)

    Google Scholar 

  61. Tami, A.E., Nasser, P., Verborgt, O., Schaffler, M.B., Knothe Tate, M.L.: The role of interstitial fluid flow in the remodeling response to fatigue loading. J. Bone Miner. Res. 17(11), 2030–2037 (2002)

    Google Scholar 

  62. Tami, A., Schaffler, M.B., Knothe Tate, M.L.: Probing the tissue to subcellular level structure underlying bone’s molecular sieving function. Biorheology 40(6), 577–590 (2003)

    Google Scholar 

  63. Tsuchida, E., Komatsu, T., Hamamatsu, K., Matsukawa, Y., Tajima, A., Yoshizu, A., Izumi, Y., Kobayashi, K.: Exchange transfusion with albumin-heme as an artificial O2-infusion into anesthetized rats: Physiological responses, O2-delivery, and reduction of the oxidized hemin sites by red blood cells. Bioconjug. Chem. 11(1), 46–50 (2000)

    Article  Google Scholar 

  64. Wang, L., Cowin, S.C., Weinbaum, S., Fritton, S.P.: Modeling tracer transport in an osteon under cyclic loading. Ann. Biomed. Eng. 28, 1200–1209 (2000)

    Article  Google Scholar 

  65. Weinbaum, S., Cowin, S.C., Zeng, Y.: A model for the excitation of osteocytes by mechanical loading induced bone shear stresses. J. Biomech. 27, 339–360 (1994)

    Article  Google Scholar 

  66. You, J., Yellowley, C.E., Donahue, H.J., Zhang, Y., Chen, Q., Jacobs, C.R.: Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. J. Biomech. Eng. 122, 387–393 (2000)

    Article  Google Scholar 

  67. You, L., Cowin, S.C., Schaffler, M.B., Weinbaum, S.: A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. J. Biomech. 34, 1375–1386 (2001)

    Article  Google Scholar 

  68. You, L.D., Weinbaum, S., Cowin, S.C., Schaffler, M.B.: Ultrastructure of the osteocyte process and its pericellular matrix. Anat. Rec. 278, 505–513 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa L. Knothe Tate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tate, M.L.K., Steck, R., Tami, A., Sidler, HJ., Anderson, E.J., Niederer, P. (2010). Computational Modeling of Extravascular Flow in Bone. In: De, S., Guilak, F., Mofrad R. K., M. (eds) Computational Modeling in Biomechanics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3575-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3575-2_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3574-5

  • Online ISBN: 978-90-481-3575-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics