Advertisement

The Role of Creativity and Randomizers in Human Cognition and Problem Solving

  • Werner Leinfellner
Conference paper
Part of the Theory and Decision Library A: book series (TDLA, volume 46)

Abstract

Genetic algorithms demonstrate that a higher organism in its environment or society can modify its behavior (humans their societal decisions) by a selective and adaptive learning process which is regimented by ad-hoc game-theoretical and statistical societal default rules. These rules may change even genetically fixed rules; their use can generate new ones which our brain evaluates (Holland’s “credit assignments”; Holland 1995, p 53); the organism must store all of them in its memory system. In short, animals learn (mostly) unconsciously by using default rules (Holland 1995, p 45), humans consciously by using default rules stored in the higher linguistic and the cultural memory3 system. Thus, evolutionary processing by learning, rule generation, and rules of innovations (Holland 1995, p 61) can totally describe the evolutionary and evolutive dynamic. It is characteristic for mental evolutive processing after randomizations to progress gradually by using default rules, step by step, beyond the established knowledge. The use of default rules by humans can lead, as we will show, to mental innovations and the creation of entirely new solutions of conflicts between different mentifacts, sociofacts, artifacts, and technifacts. The advances of scientific research in democratic societies are produced by inventions, teaching, transmitting, and by storing past and new solutions of societal conflicts, as well as by the ultimate successful realizations. They rest upon serial default rules stored by the gigantic, cultural, scientific, evolutive process in our cultural memory3. The process is rule-bound; this is one salient property of TSO (Götschl) theories.

Keywords

Wave Pattern Democratic Society Lottery Ticket Default Rule Creative Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I am indebted to J. Götschl for dozens of conversations at the Ludwig Boltzmann Institute for Science and Research, University of Graz. I profited from a graduate seminar on evolution at the University of Rome. I am also indebted to E. Basar and A. Carsetti. I benefited from discussions with M. Allais, J. Harsanyi, E. McClennen, M. Machina, B. Munier, A. Rapoport, R. Selten, J. Nida-Rümelin, B. Skyrms, and M. Wuketits. Last and most important: thanks to my wife Elisabeth Leinfellner for clarifying my thinking and improving the text.

References

  1. Adey WR (1988) Electromagnetic field interactions in the brain. In: Basar 1988Google Scholar
  2. Arthur WB (1999) Complexity and the economy. Science 284Google Scholar
  3. Axelrod R (1984) The evolution of cooperation. Basic Books, New YorkGoogle Scholar
  4. Bak P (1996) How nature works. Springer, New YorkGoogle Scholar
  5. Barrow JD, Tippler F (1986) The anthropic principle. Oxford U.P., OxfordGoogle Scholar
  6. Basar E (1980) EEG-brain dynamics. Elsevier, AmsterdamGoogle Scholar
  7. Basar E (ed) (1988) Dynamics of sensory and cognitive processing by the brain. Springer, BerlinGoogle Scholar
  8. Bäumler E (1997) Paul Ehrlich. Edition Votzel, FrankfurtGoogle Scholar
  9. Boden MA (1990) The creative mind: myths andmechanisms. Basic Books, LondonGoogle Scholar
  10. Bunge M (1980) The mind–body problem. Pergamon, OxfordGoogle Scholar
  11. Churchland PS (1986) Neurophilosophy. MIT Press, CambridgeGoogle Scholar
  12. Damasio A (1999) The feeling of what happens. Harcourt Brace, New YorkGoogle Scholar
  13. Damasio A (1994) Decartes’ error. Putnam’s Sons New YorkGoogle Scholar
  14. Eccles J (1989) Evolution of the brain: creation of the self. Routledge, LondonGoogle Scholar
  15. Eigen M, Schuster P (1979) The hypercycle: a princip1e of natural self-organization. Springer, BerlinGoogle Scholar
  16. Feigenbaum JM (1978) Quantitative universality for a class of nonlinear transformations. J Stat Phy 19Google Scholar
  17. Freeman WJ (1988) A watershed in the study of nonlinear neural dynamics. In: Dynamics of sensory and cognitive processing by the brain. Springer, BerlinGoogle Scholar
  18. Freeman WJ (1988) Nonlinear neural dynamics in olfaction as a model for cognition. In: Basar 1988Google Scholar
  19. Götschl J (ed) (1993) Revolutionary changes in understanding man and society. Kluwer, DordrechtGoogle Scholar
  20. Götschl J (1988) Wissenschaftlicher Fortschritt und Bedingungen für Humanitätsgewinn. Zeitschrift für Wissenschafisforschung 4Google Scholar
  21. Gould St. (1989) Wonderful life. Norton, New YorkGoogle Scholar
  22. Güth A (1997) The inflationary universe. Addison-Wesley, ReadingGoogle Scholar
  23. Güth W (1992) Spieltheorie und ökonomische (Bei) Spiele, BerlinGoogle Scholar
  24. Haller R, Stadler F (eds) (1988) Ernst Mach: Werk und Wirkung. Pichler Tempsky, WienGoogle Scholar
  25. Helbing D (1995) Quantitative Sociodynamics. Kluwer, DordrechtGoogle Scholar
  26. Holland JH (1992) Adaptation in natural and artificial systems. MIT Press, CambridgeGoogle Scholar
  27. Holland JH (1995) Hidden order. Addison-Wesley, Reading, MAGoogle Scholar
  28. Kauffman St. (1993) The origins of order. Oxford U.P., New York.Google Scholar
  29. Kratky K (ed) (1989) Systemtheorie und Reduktionismus. Edition S, WienGoogle Scholar
  30. Leinfellner E (1992) Semantische Netze und Textzusammenhang. Lang, FrankfurtGoogle Scholar
  31. Leinfellner E (1994a) Die Negation im monologischen Text: Textzusammenhang und Foregrounding. Folia Linguistica 25Google Scholar
  32. Leinfellner E (1994b) The broader perspective of negation. J Lit Semantics 23Google Scholar
  33. Leinfellner W (1984) Evolutionary causality and theory of games. In: Concepts and approaches in evolutionary epistemology. Kluwer, DordrechtGoogle Scholar
  34. Leinfellner W (1985) Reconstruction of Schlick’s psychosociological ethics. Synthese 64Google Scholar
  35. Leinfellner W (1988a) The brain-wave model as a protosemantic model. In: Basar 1988Google Scholar
  36. Leinfellner W (1988b) Physiologie und Psychologie: Ernst Machs Analyse der Empfindungen. In: Ernst Mach: Werk und Wirkung. Pichler Tempsky, WienGoogle Scholar
  37. Leinfellner W (1989) Holismus, Reduktionismus und die Theorie dynamischer Systeme. In: Systemtheorie und Reduktionismus. Edition S, WienGoogle Scholar
  38. Leinfellner W (1995) Soziale Intelligenz und Rationalität. Zeitschrift für Wissenschaftsforschung 9/10Google Scholar
  39. Leinfellner W (1997) Empiristische Bemerkungen zu Harsanyis Modell ‘Games with Incomplete Information’. Zeitschrift für Wissenschaftsforschung 11/12Google Scholar
  40. Leinfellner W, Köhler E (eds) (1998) Game theory, experience, rationality. Kluwer, DordrechtGoogle Scholar
  41. Lumsden CH J, Wilson EO (1981) Genes, mind and culture. Harvard U.P., CambridgeGoogle Scholar
  42. Machina MJ (1987) Expected utility analysis without the independence axiom. Econometrica 50Google Scholar
  43. Monod J (1970) Le Hasard et la nécessité. Seuil, ParisGoogle Scholar
  44. McClennen EF (1998) Rethinking rational cooperation. In: Game theory, experience, rationality. Kluwer, DordrechtGoogle Scholar
  45. Penrose R (1994) Shadows of the mind. Oxford U.P., OxfordGoogle Scholar
  46. Pinker M St (1998) Wie das Denken im Kopfentsteht. Kindler, MünchenGoogle Scholar
  47. Popper K, Eccles JC (1997) The self and its brain. Springer, BerlinGoogle Scholar
  48. Ruelle D (1991) Chance and Chaos. Princeton U.P., PrincetonGoogle Scholar
  49. Selten R (1988) Game theory, experience, rationality. In: Game theory, experience, rationality. Kluwer, DordrechtGoogle Scholar
  50. Schuster P (1983) Replicator dynamics. J Theor Biol 100Google Scholar
  51. Schuster P, Hofbauer J, Sigmund K (1979) A note on evolutionary stable strategies and game dynamics. J Theor Biol 81Google Scholar
  52. Smith JM (1982) Evolution and the theory of games. Cambridge U.P., CambridgeGoogle Scholar
  53. Sigmund K (1993) Games of life. Oxford U.P., New YorkGoogle Scholar
  54. Tulving E (1983) Elements of episodic memory. Oxford U.P., OxfordGoogle Scholar
  55. Weibull JW (1995) Evolutionary game theory. MIT Press, CambridgeGoogle Scholar
  56. Wuketits FM (ed) (1984) Concepts and approaches in evolutionary epistemology. Kluwer, DordrechtGoogle Scholar
  57. Wuketits EM (1993) Verdammt zur Unmoral? Piper, MünchenGoogle Scholar
  58. Wuketits FM (1997) Soziobiologie. Spectrum, HeidelbergGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Werner Leinfellner
    • 1
  1. 1.University of NebraskaWienAustria

Personalised recommendations