Hydroxy Benzoate Preservatives (Parabens) in the Environment: Data for Environmental Toxicity Assessment

  • Ingrid BazinEmail author
  • Aurelie Gadal
  • Eveline Touraud
  • Benoit Roig
Part of the Environmental Pollution book series (EPOL, volume 16)


Parabens are alkyl esters of p-hydroxybenzoic acid that could be encountered in various environmental waters; and there is little available information about the adverse effects of these compounds on aquatic organisms. Moreover, information concerning their levels and potential environmental long-term effects are currently missing.

This paper aims at increasing the knowledge on the potential hazard of parabens. Four microorganism model systems (Vibrio fischeri, Photobacterium leiognathi, Daphnia magna and Tetrahymena thermophila) have been used for this purpose. In addition, estrogenicity has been studied for parabens and binary mixtures of estrogenic compounds and parabens by using a recombinant yeast estrogen screen assay (YES). Following the EU EMEA Environmental Risk Assessment guideline for classification of dangerous substances and considering the results obtained with Daphnia magna, methyl, ethyl and n-propyl parabens should be classified as harmful substances for aquatic organisms, whereas n-butyl and benzyl parabens as toxic substances. Concerning the biological activity, parabens are 8,000-900,000-fold less estrogenic than estradiol, the most estrogenic one being the aromatic compound benzylparaben. Higher estrogenic effect has been observed when estrogenic compounds have been added to parabens.


Binary Mixture Aquatic Organism Estrogenic Activity Estrogenic Effect Estrogenic Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The yeast strain was supplied by Susanna Boronat (Barcelona, Spain).


  1. Alslev, B., Korsgaard, B., & Bjerregaard, P. (2005). Estrogenicity of butylparaben in rainbow trout Oncorhynchus mykiss exposed via food and water. Aquatic Toxicology, 72, 295-304.CrossRefGoogle Scholar
  2. Arnold, S. F., Bergeron, J. M., Tran, D. Q., Collins, B. M., Vonier, P. M., Crews, D., et al. (1997). Synergistic responses of steroidal estrogens in vitro (yeast) and in vivo (turtles). Biochemical and Biophysical Research Communications, 235, 336-342.CrossRefGoogle Scholar
  3. Bjerregaard, P., Andersen, D. N., Pedersen, K. L., Pedersen, S. N., & Korsgaard, B. (2003). Estrogenic effect of propylparaben (propylhydroxybenzoate) in rainbow trout Oncorhynchus mykiss after exposure via food and water. Comparative Biochemistry and Physiology, 136, 309-317.CrossRefGoogle Scholar
  4. Byford, J. R., Shaw, L. E., Drew, M. G., Pope, G. S., Sauer, M. J., & Darbre, P. D. (2002). Oestrogenic activity of parabens in MCF7 human breast cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 80, 49-60.CrossRefGoogle Scholar
  5. Canosa, P., Rodríguez, I., Rubí, E., Bollaín, M. H., & Cela, R. (2006). Optimisation of a solid-phase microextraction method for the determination of parabens in water samples at the low ng per litre level. Journal of Chromatography A, 1124, 3-10.CrossRefGoogle Scholar
  6. Cashman, A. L., & Warshaw, E. M. (2005). Parabens: A review of epidemiology, structure, allergenicity, and hormonal properties. Dermatitis, 16, 57-66.Google Scholar
  7. Chen, M. Y., Ike, M., & Fujita, M. (2002). Acute toxicity, mutagenicity, and estrogenicity of bisphenol-A and other bisphenols. Environmental Toxicology, 17, 80-86.CrossRefGoogle Scholar
  8. Darbre, P. D. (2006). Environmental oestrogens, cosmetics and breast cancer. Best Practice & Research. Clinical Endocrinology & Metabolism, 20, 121-143.CrossRefGoogle Scholar
  9. Darbre, P. D., Aljarrah, A., Miler, W. R., Coldham, N. G., Sauer, M. J., & Pope, G. S. (2004). Concentrations of parabens in human breast tumours. Journal of Applied Toxicology, 24, 5-13.CrossRefGoogle Scholar
  10. Darbre, P. D., Byford, J. R., Shaw, L. E., Horton, R. A., Pope, G. S., & Sauer, M. J. (2002). Oestrogenic activity of isobutylparaben in vitro and in vivo. Journal of Applied Toxicology, 22, 219-226.CrossRefGoogle Scholar
  11. Darbre, P. D., & Harvey, P. W. (2008). Paraben esters: Review of recent studies of endocrine toxicity, absorption, esterase and human exposure, and discussion of potential human health risks. Journal of Applied Toxicology, 28, 561-578.CrossRefGoogle Scholar
  12. Davoren, M., & Fogarty, A. M. (2004). A test battery for the ecotoxicological evaluation of the agri-chemical environment. Ecotoxicology and Environmental Safety, 59, 16-22.CrossRefGoogle Scholar
  13. DellaGreca, M., Iesce, M. R., Isidori, M., Nardelli, A., Previtera, L., & Rubino, M. (2007). Phototransformation products of tamoxifen by sunlight in water. Toxicity of the drug and its derivatives on aquatic organisms. Chemosphere, 67, 1933-1939.CrossRefGoogle Scholar
  14. Doron, S., Friedman, M., Falach, M., Sadovnic, E., & Zvia, H. (2001). Antibacterial effect of parabens against planktonic and biofilm Streptococcus sobrinus. International Journal of Antimicrobial Agents, 18, 575-578.CrossRefGoogle Scholar
  15. Elder, R. L. (1984). Final report on the safety assesment of methylparaben, ethylparaben, propylparaben, end butylparaben. Journal of the American College of Toxicology, 3, 147-209.Google Scholar
  16. García-Reyero, N., Grau, E., Castillo, M., López de Alda, M. J., Barceló, D., & Piña, B. (2001). Monitoring of endocrine disruptors in surface waters by the yeast recombinant assay. Journal of Environmental Toxicology and Chemistry, 20, 1152-1158.Google Scholar
  17. International Standard Organization. (1998). Water-quality determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (luminescence bacteria test). EN ISO 11348-3. Geneva, Switzerland.Google Scholar
  18. Inui, M., Adachi, T., Takenaka, S., Inui, H., Nakazawa, M., Ueda, M., et al. (2003). Effect of UV screens and preservatives on vitellogenin and horiogenin production in male medaka (Oryzias latipes). Toxicology, 15, 43-50.CrossRefGoogle Scholar
  19. Jonsson, S., & Baun, A. (2003). Toxicity of mono- and diesters of o-phthalic esters to a crustacean, a green alga, and a bacterium. Environmental Toxicology and Chemistry, 22, 3037-3043.CrossRefGoogle Scholar
  20. Kang, K. S., Cho, S. D., & Lee, Y. S. (2002). Additive estrogenic activities of the binary mixtures of four estrogenic chemicals in recombinant yeast expressing human estrogen receptor. Journal of Veterinary Science, 3, 1-5.Google Scholar
  21. Lee, H. B., Peart, T. E., & Svoboda, M. L. (2005). Determination of endocrine-disrupting phenols, acidic pharmaceuticals, and personal-care products in sewage by solid-phase extraction and gas chromatography-mass spectrometry. Journal of Chromatography A, 1094, 122-129.CrossRefGoogle Scholar
  22. Lemini, C., Hernández, A., Jaimez, R., Franco, Y., Avila, M. E., & Castell, A. (2004). Morphometric analysis of mice uteri treated with the preservatives methyl, ethyl, propyl, and butylparaben. Toxicology and Industrial Health, 20, 123-132.CrossRefGoogle Scholar
  23. Lemini, C., Jaimez, R., Avila, M. E., Franco, Y., Larrea, F., & Lemus, A. E. (2003). In vivo and in vitro estrogen bioactivities of alkyl parabens. Toxicology and Industrial Health, 19, 69-79.CrossRefGoogle Scholar
  24. Loureiro, S., Ferreira, A. L., Soares, A. M., & Nogueira, A. J. (2005). Evaluation of the toxicity of two soils from Jales Mine (Portugal) using aquatic bioassays. Chemosphere, 61, 168-177.CrossRefGoogle Scholar
  25. Mendonça, E., Picado, A., Silva, L., & Anselmo, A. M. (2007). Ecotoxicological evaluation of cork-boiling wastewaters. Ecotoxicology and Environmental Safety, 66, 384-390.CrossRefGoogle Scholar
  26. Nelson, J., Bishay, F., van Roodselaar, A., Ikonomou, M., & Law, F. C. P. (2007). The use of in vitro bioassays to quantify endocrine disrupting chemicals in municipal wastewater treatment plant effluents. Science of the Total Environment, 374, 80-90.CrossRefGoogle Scholar
  27. Núñez, L., Tadeo, J. L., García-Valcárcel, A. I., & Turiel, E. (2008). Determination of parabens in environmental solid samples by ultrasonic-assisted extraction and liquid chromatography with triple quadrupole mass spectrometry. Journal of Chromatography A, 1214, 178-182.CrossRefGoogle Scholar
  28. Oishi, S. (2001). Effects of butylparaben on the male reproductive system in rats. Toxicology and Industrial Health, 17, 31-39.CrossRefGoogle Scholar
  29. Oishi, S. (2002a). Effects of butyl paraben on the male reproductive system in mice. Archives of Toxicology, 76, 423-429.CrossRefGoogle Scholar
  30. Oishi, S. (2002b). Effects of propyl paraben on the male reproductive system. Food and Chemical Toxicology, 40, 1807-1813.CrossRefGoogle Scholar
  31. Okubo, T., Yokoyama, Y., Kano, K., & Kano, I. (2001). ER-dependent estrogenic activity of parabens assessed by proliferation of human breast cancer MCF-7 cells and expression of ERalpha and PR. Food and Chemical Toxicology, 39, 1225-1232.Google Scholar
  32. Payne, J., Rajapakse, N., Wilkins, M., & Kortenkamp, A. (2000). Prediction and assessment of the effects of mixtures of four xenoestrogens. Environmental Health Perspectives, 108, 983-987.Google Scholar
  33. Payne, J., Scholze, M., & Kortenkamp, A. (2001). Mixtures of four organochlorines enhance human breast cancer cell proliferation. Environmental Health Perspectives, 109, 391-397.CrossRefGoogle Scholar
  34. Protoxkit F. (1998). Protoxkit F, 1998. Freshwater toxicity test with a ciliate protozoan (18 pp.). Standard Operational Procedure. Deinze, Belgium: Creasel.Google Scholar
  35. Rajapakse, N., Ong, D., & Kortenkamp, A. (2001). Defining the impact of weakly estrogenic chemicals on the action of steroidal estrogens. Toxicological Sciences, 60, 296-304.CrossRefGoogle Scholar
  36. Rajapakse, N., Silva, E., & Kortenkamp, A. (2002). Combining xenoestrogens at levels below individual no-observed-effect concentrations dramatically enhances steroid hormone action. Environmental Health Perspectives, 110, 917-921.CrossRefGoogle Scholar
  37. Routledge, E. J., Parker, J., Odum, J., Ashby, J., & Sumpter, J. P. (1998). Some alkyl hydroxy benzoate preservatives (parabens) are estrogenic. Toxicology and Applied Pharmacology, 153, 12-19.CrossRefGoogle Scholar
  38. Silva, E., Rajapkse, N., & Kortenkamp, A. (2002). Something from “nothing”-eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environmental Science and Technology, 36, 1751-1756.CrossRefGoogle Scholar
  39. Soni, M. G., Burdock, G. A., Taylor, S. A., & Greenberg, N. A. (2001). Safety assessment of propyl paraben: A review of the published literature. Food and Chemical Toxicology, 39, 513-532.CrossRefGoogle Scholar
  40. Soni, M. G., Carabin, I. G., & Burdock, G. A. (2005). Safety assessment of esters of p-hydroxybenzoic acid (parabens). Food and Chemical Toxicology, 43, 985-1015.CrossRefGoogle Scholar
  41. Soni, M. G., Taylor, S. L., Greenberg, N. A., & Burdock, G. A. (2002). Evaluation of the health aspects of methyl paraben: A review of the published literature. Food and Chemical Toxicology, 40, 1335-1373.CrossRefGoogle Scholar
  42. Suzuki, T., Ide, K., & Ishida, M. (2001). Response of MCF-7 human breast cancer cells to some binary mixtures of oestrogenic compounds in-vitro. Journal of Pharmacy and Pharmacology, 53, 1549-1554.CrossRefGoogle Scholar
  43. Tavares, R. S., Martins, F. C., Oliveira, P. J., Ramalho-Santos, J., & Peixoto, F. P. (2009). Parabens in male infertility-is there a mitochondrial connection? Reproductive Toxicology, 27, 1-7.CrossRefGoogle Scholar
  44. Thorpe, K. L., Gross-Sorokin, M., Johnson, I., Brighty, G., & Tyler, C. R. (2006). An assessment of the model of concentration addition for predicting the estrogenic activity of chemical mixtures in wastewater treatment works effluents. Environmental Health Perspectives, 1, 90-97.Google Scholar
  45. U.S. Environmental Protection Agency. (2005). ECOTOX User Guide: ECOTOXicology database System. Version 3.0. From
  46. Ulitzur, S., Lahav, T., & Ulitzur, N. (2002). A novel and sensitive test for rapid determination of water toxicity. Environmental Toxicology, 17, 291-296.CrossRefGoogle Scholar
  47. USEPA. (2000). Ecological structure activity relationship (ECOSAR) program. From
  48. Van Meeuwen, J. A., van Son, O., Piersma, A. H., de Jong, P. C., & van den Berg, M. (2008). Aromatase inhibiting and combined estrogenic effects of parabens and estrogenic effects of other additives in cosmetics. Toxicology and Applied Pharmacology, 230, 372-382.Google Scholar
  49. Vasseur, P., Ferrad, F. J., Vial, J., & Larbaigt, G. (1984). Comparaison des tests Microtox et Daphnie pour l’evaluation de la toxicité aigue d’effluents industriels. Environmental Pollution (Series A), 34, 225-235.CrossRefGoogle Scholar
  50. Yamamoto, H., Watanabe, M., Hirata, Y., Nakamura, Y., Nakamura, Y., Kitani, C., et al. (2007). Preliminary ecological risk assessment of butylparaben and benzylparaben-1. Removal efficiency in wastewater treatment, acute/chronic toxicity for aquatic organisms, and effects on Medaka. Gene Expression. Environmental Sciences, 14(Suppl), 73-87.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Ingrid Bazin
    • 1
    Email author
  • Aurelie Gadal
    • 1
  • Eveline Touraud
    • 1
  • Benoit Roig
    • 1
  1. 1.Ecole des Mines d’Alès, LGEI centerAlès CedexFrance

Personalised recommendations