Skip to main content

Evolution and Energization of Energetic Electrons in the Inner Magnetosphere

  • Conference paper
  • First Online:
The Cluster Active Archive

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP))

Abstract

In this paper we present a review of what we know about the evolution and energization of energetic electrons in the inner magnetosphere. We emphasize what we have learned since the review by Friedel et al. [17] that discussed in detail the possible acceleration mechanisms for these electrons. The primary result has been a greater focus on local acceleration processes with significant new evidence that points to processes that are acting in the region between GPS and geosynchronous altitudes. In addition to reviewing the most recent results we also use as an example the magnetosphere’s energetic electron responses to a series of storms that occurred in the July 16–25, 2004 period. The storms had gradually increasing magnitude, in terms of their minimum DST of − 80, − 101, − 148, and − 197 nT. We followed the penetration and enhancements of the electrons as a function of L value using the HEO3 observations. We found that the two smallest storms did not cause relativistic electron enhancements for L < 6. 5 but did cause enhancements in the electron “source” populations at > 130 and > 230 keV down to L ∼3. 0. The two largest events cause electron enhancements at all energies from > 130 keV to > 3 MeV down to L ∼2. 5. We found that the Cluster IES observations of the source populations in the pre midnight plasma sheet were quite intense with strong field aligned distributions during the early main phase of the storm on July 24. The combined results indicate that these early main phase electron fluxes at Cluster may be directly linked to the rapid response of electrons at low L observed by HEO3 and could have been the source for the < 1 MeV fluxes observed there.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Åsnes, A., M. G. G. T. Taylor, A. L. Borg, B. Lavraud, R. W. H. Friedel, C. P. Escoubet, H. Laakso, 1. Daly, and A. N. Fazakerley, Multispacecraft observation of electron beam in reconnection region, J. Geophys. Res., 113, A07S30, doi:10.1029/2007JA012770, 2008.

    Google Scholar 

  2. Baker, D. N., J. B. Blake, L. B. Callis, J. R. Cummings, D. Hovestadt, S. Kanekal, B. Klecker, R. A. Mewaldt, and R. D. Zwickl, Relativistic electron acceleration and decay time scales in the inner and outer radiation belts: SAMPEX, Geophys. Res. Lett., 21, 409, 1994.

    Article  ADS  Google Scholar 

  3. Baker, D. N., J. B. Blake, R. W. Klebesadel, and P. R. Higbie, Highly Relativistic Electrons in the Earth’s Outer Magnetosphere, 1. Lifetimes and Temporal History 1979–1984, J. Geophys. Res., 91, 4265, 1986.

    Google Scholar 

  4. Baker, D. N., P. R. Higbie, E. W. Hones Jr., and R. D. Belian, High-Resolution Energetic Particle Measurements at 6.6 RE, 3. Low-Energy Electron Anisotropies and Short-Term Substorm Predictions, J. Geophys. Res., 83, 4863, 1987.

    Google Scholar 

  5. Baker, D. N., W. K. Peterson, S. Eriksson, X. Li, J. B. Blake, J. L. Burch, P. W. Daly, M. W. Dunlop, A. Korth, E. Donovan, R. Friedel, T. A. Fritz, H. U. Frey, S. B. Mende, J. Roeder, and H. J. Singer, Timing of magnetic reconnection initiation during a global magnetospheric substorm onset, Geophys. Res. Lett., 29, 2190, doi:10.1029/2002GL015539, 2002.

    Google Scholar 

  6. Balogh, A., M. W. Dunlop, and S. W. H. Cowley et al., The Cluster magnetic fields investigation, Space Sci. Rev. 79, 65, 1997.

    Article  ADS  Google Scholar 

  7. Blake, J. B., D. N. Baker, N. Turner, K. W. Ogilvie, and R. P. Lepping, Correlation of changes in the outer-zone relativistic-electron population with upstream solar wind and magnetic field measurements, Geophys. Res. Lett., 24, 927, 1997.

    Article  ADS  Google Scholar 

  8. Blake, J. B., R. Mueller-Mellin, J. A. Davies, X. Li, and D. N. Baker, Global observations of energetic electrons around the time of a substorm on 27 August 2001, J. Geophys. Res., 110, A06214, doi:10.1029/2004JA010971, 2005.

    Google Scholar 

  9. Blake, J. B., R. S. Selesnick, D. N. Baker, and S. Kanekal, Studies of relativistic electron injection events in 1997 and 1998, J. Geophys. Res., 106, 19157, 2001.

    Article  ADS  Google Scholar 

  10. Bortnik, J. and R. M. Thorne, The dual role of ELF/VLF chorus waves in the acceleration and precipitation of radiation belt electrons, JSAPT, 69, 378, doi:10.1016/j.jastp.2006. 05.030, 2007.

    Google Scholar 

  11. Chen, Y., G. Reeves, and R. H. W. Friedel, The energization of relativistic electrons in the outer Van Allen radiation belt, Nature Physics, 3, 614, 2007.

    Article  ADS  Google Scholar 

  12. Elkington, S. R., M. K. Hudson, A. A. Chan, Acceleration of relativistic electrons via drift-resonant interaction with toroidal-mode Pc-5 ULF oscillation, Geophys. Res. Lett., 26, 3273, 1999.

    Article  ADS  Google Scholar 

  13. Elkington, S. R., M. K. Hudson, and A. A. Chan, Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field, J. Geophys. Res., 108, (A3), 1116, doi:10.1029/ 2001JA009202, 2003.

    Google Scholar 

  14. Falthammer, C. G., Radial diffusion by violation of the third adiabatic invariant, in: Earths Particles and Fields. Reinhold, New York, p. 157, 1968.

    Google Scholar 

  15. Fennell, J. F. and J. L. Roeder, Storm time phase space density radial profiles of energetic electrons for small and large K values: SCATHA results, Journal of Atmospheric and Solar–Terrestrial Physics, 70, 1760, doi:10.1016/j.jastp.2008.03.014, 2008.

    Google Scholar 

  16. Fennell, J. F., J. B. Blake, R. Friedel, and S. Kanekal, The Energetic Electron Response to Magnetic Storms: HEO Satellite Observations, in Physics and Modeling of the Inner Magnetosphere, AGU monograph 155, p. 87, 2005.

    Google Scholar 

  17. Friedel, R. H. W., G. D. Reeves, and T. Obara, Relativistic electron dynamics in the inner magnetospherea—review, J. Atmospheric and Solar Terrestrial Physics, 64, 265, 2002.

    Article  ADS  Google Scholar 

  18. Fujimoto, M. and A. Nishida, Energization and anisotropization of energetic electrons in the Earth’s radiation belt by the recirculation process, J. Geophys. Res., 95, 4265, 1990.

    Article  ADS  Google Scholar 

  19. Green, J. C. and M. G. Kivelson, Relativistic electrons in the outer radiation belt: differentiating between acceleration mechanisms, J. Geophys. Res., 109, doi:10.1029/2003JA010153, 2004.

    Google Scholar 

  20. Green, J. C., T. G. Onsager, T. P. O’Brien, and D. N. Baker, Testing loss mechanisms capable of rapidly depleting relativistic electron flux in the Earth’s outer radiation belt, J. Geophys. Res., 109, A1224, 2004.

    Google Scholar 

  21. Horne, R. B., N. P. Meredith, R. M. Thorne, D. Heynderickx, R. H. A. Iles, and R. R. Anderson, Evolution of energetic electron pitch angle distributions during storm time electron acceleration to megaelectronvolt energies, J. Geophys. Res., 108, 1016, doi:10.1029/2001JA009165, 2003.

    Google Scholar 

  22. Horne, R., R. M. Thorne, S. A. Glauert, J. M. Albert, N. P. Meredith, and R. R. Anderson, Timescale for radiation belt electron acceleration by whistler mode chorus waves, J. Geophys. Res., 110, A03225, doi:10.1029/2004JA010811, 2005.

    Google Scholar 

  23. Horne, R. B., R. M. Thorne, S. A. Glauert, N. P. Meredith, D. Pokhotelov, and O. Santolik (2007), Electron acceleration in the Van Allen radiation belts by fast magnetosonic waves, Geophys. Res. Lett., 34, L17107, doi:10.1029/2007GL030267.

    Article  Google Scholar 

  24. Hudson, M. K., S. R. Elkington, J. G. Lyon, M. J. Wiltberger, and M. Lessard, Radiation belt electron acceleration by ULF wave drift resonance: Simulation of 1997 and 1998 storms, in Space Weather, edited by P. Song, H. J. Singer, and G. L. Siscoe, vol. 125, p. 289, AGU, Washington, D. C., 2001.

    Google Scholar 

  25. Hudson, M.K., S. R. Elkington, J. G. Lyon, V. A. Marchenko, I. Roth, M. Temerin, J. B. Blake, Gussenhoven, and M. S, J. R Wygant, Simulations of radiation belt formation during storm sudden commencements, J. Geophys. Res., 102, 14087, 1997.

    Google Scholar 

  26. Iles, R. H. A., N. P. Meredith, A. N. Fazakerley, and R. B. Horne, Phase space density analysis of the outer radiation belt energetic electron dynamics, J. Geophys. Res., 111, A03204, doi:10.1029/2005JA011206, 2006.

    Google Scholar 

  27. Jordanova, V. K., New insights on geomagnetic storms from model simulations using multispacecraft data, Sp. Sci. Rev., 107, 157, 2003.

    Article  ADS  Google Scholar 

  28. Kaufmann, R. L., Conservation of the first and second adiabatic invariants, J. Geophys. Res., 70, 2181, 1965.

    Article  ADS  Google Scholar 

  29. Li, X., D. N. Baker, T. P. O’Brien, L. Xie, and Q. G. Zong, Correlation between the inner edge of outer radiation belt electrons and the innermost plasmapause location, Geophys. Res. Lett., 33, L14107, doi:10.1029/2006GL026294, 2006.

    Google Scholar 

  30. Li, X., I. Roth, M. Temerin, J. R. Wygant, M. K. Hudson, and J. B. Blake, Simulations of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC, Geophys. Res. Lett., 20, 2423, 1993.

    Article  ADS  Google Scholar 

  31. Lorentzen, K. R., J. B. Blake, U. S. Inan, and J. Bortnik, Observations of relativistic electron microbursts in association with vlf chorus, J. Geophys. Res., 106, 6017, 2001.

    Article  ADS  Google Scholar 

  32. McAdams, K. L. and G. D. Reeves, Non-adiabatic relativistic electron response. Geophys. Res. Lett., 28, 1879–1882, 2001.

    Article  ADS  Google Scholar 

  33. McIlwain, C. E., Coordinates for Mapping the Distribution of Magnetically Trapped Particles, J. Geophys. Res., 66, 3681, 1961.

    Article  ADS  Google Scholar 

  34. Meredith, N., R. B. Horne, S. A. Glauert, R. M Thorne, D. Summers, J. M. Albert, and R. R. Anderson, Energetic outer zone electron loss timescales during low geomagnetic activity, J. Geophys. Res., 111, A05212, doi:10.1029/2005JA011516, 2006.

    Google Scholar 

  35. Meredith, N. P., R. B. Horne, R. H. A. Iles, R. M. Thorne, D. Heynderickx, R. R. Anderson, Outer zone relativistic electron acceleration associated with substorm-enhanced whistler mode chorus, J. Geophys. Res., 107, doi:10.1029/2001JA900146, 2002b.

    Google Scholar 

  36. Meredith, N. P., R. B. Horne, D. Summers, R. M. Thorne, R. H. A. Iles, D. Heynderickx, R.R. Anderson, Evidence for acceleration of outer zone electrons to relativistic energies by whistler mode chorus. Ann. Geophys. 20, 967, 2002a.

    Article  ADS  Google Scholar 

  37. Meredith, N., R. M. Thorne, R. B. Horne, D. Summers, B. J. Fraser, and R. R. Anderson, Statistical analysis of relativistic electron energies for cyclotron resonance with EMIC waves observed on CRRES, J. Geophys. Res., 108, 1250, doi:10.1029/2002JA009700, 2003.

    Google Scholar 

  38. O’Brien, T. P. and M. B. Moldwin, Empirical plasmapause models from geomagnetic indices. Geophys. Res. Lett., 30, 1152, 2003.

    Article  ADS  Google Scholar 

  39. O’Brien, T. P., K. R. Lorentzen, I. R. Mann, N. P. Meredith, J. B. Blake, J. F. Fennell, M. D. Looper, D. K. Milling, and R. R. Anderson, Energization of relativistic electrons in the presence of ULF power and MeV microbursts: Evidence for dual ULF and VLF acceleration, J. Geophys. Res., 108, 1329, doi:10.1029/2002JA009784, 2003.

    Google Scholar 

  40. Olson, W. P. and K. A. Pfitzer, A Quantitative Model of the Magnetospheric Magnetic Field, J. Geophys. Res., 79, 3739, 1974.

    Article  ADS  Google Scholar 

  41. Olson, W. P. and K. A. Pfitzer, Magnetospheric magnetic field modeling, Annual Scientific Report, AFOSR Contract No. F44620-75-C-0033, 1977.

    Google Scholar 

  42. Onsager, T. G., G. Rostoker, H.-J. Kim, G. D. Reeves, T. Obara, H. J. Singer, and C. Smithtro, Radiation belt electron flux dropouts: Local time, radial, and particle-energy dependence, J. Geophys. Res., 107, 1382, doi:10.1029/2001JA000187, 2002.

    Google Scholar 

  43. Paulikas, G. A. and J. B. Blake, Modulation of trapped energetic electrons at 6.6 Re by the direction of the interplanetary magnetic field, Geophys. Res. Lett., 3, 277, 1976.

    Google Scholar 

  44. Paulikas, G. A. and J. B. Blake, Effects of the solar wind on magnetospheric dynamics: Energetic electrons at the synchronous orbit, in Quantitative Modeling of Magnetospheric Processes, p180, WP Olsen, ed., Am. Geophys.Union, Washington, D. C., 1979.

    Google Scholar 

  45. Reeves, G. D., K. L. McAdams, R. H. W. Friedel, and T. P. O’Brien, Acceleration and loss of relativistic electrons during geomagnetic storms, Geophys. Res. Lett., 30(10), 1529, doi:10.1029/2002GL016513, 2003.

    Google Scholar 

  46. Roederer, J. G., Dynamics of geomagnetically trapped radiation, Springer Verlag, Heidelberg-New York, 1970.

    Google Scholar 

  47. Schulz, M. and L. J. Lanzerotti, Physics and Chemistry in Space, vol. 7, Particle Diffusion in the Radiation Belts, Springer-Verlag, New York, 1974.

    Google Scholar 

  48. Selesnick, R. S., Source and loss rates of radiation belt relativistic electrons during magnetic storms, J. Geophys. Res., 111, A04210, doi:10.1029/2005JA011473, 2006.

    Google Scholar 

  49. Selesnick, R. S. and J. B. Blake, On the source location of radiation belt relativistic electrons, J. Geophys. Res., 105, 2607, 2000.

    Article  ADS  Google Scholar 

  50. Shprits, Y. Y. and R. M. Thorne, Time dependent radial diffusion modeling of relativistic electrons with realistic loss rates, Geophys. Res. Lett., 31, L08805, doi:10.1029/2004GL019591, 2004.

    Google Scholar 

  51. Shprits, Y. Y., R. M. Thorne, R. B. Horne, S. A. Glauert, M. Cartwright, C. T. Russell, D. N. Baker, and S. G. Kanekal, Acceleration mechanism responsible for the formation of the new radiation belt during the 2003 Halloween solar storm, Geophys. Res. Lett., 33, L05104, doi:10.1029/2005GL024256, 2006a.

    Google Scholar 

  52. Shprits, Y. Y., R. M. Thorne, R. Friedel, G. D. Reeves, J. Fennell, D. N. Baker, and S. G. Kanekal, Outward radial diffusion driven by losses at magnetopause. J. Geophys. Res., 111, A11214, doi:10.1029/2006JA011657, 2006b.

    Google Scholar 

  53. Summers Danny and Chun-yu Ma, Rapid acceleration of electrons in the magnetosphere by fastmode MHD waves, J. Geophys. Res., 105, 15, 887–15,895, 2000.

    Google Scholar 

  54. Taylor, M. G. G. T., R. H. W. Friedel, G. D. Reeves, M. W. Dunlop, T. A. Fritz, P. W. Daly, and A. Balogh, Multisatellite measurements of electron phase space density gradients in the Earths inner and outer magnetosphere, J. Geophys. Res., 109, A05220, doi:10.1029/2003JA010294, 2004.

    Google Scholar 

  55. Taylor, M. G. G. T., G. D. Reeves, R. H. W. Friedel, M. F. Thomsen, R. C. Elphic, J. A. Davies, M. W. Dunlop, H. Laakso, B. Lavraud, D. N. Baker, J. A. Slavin, C. H. Perry, C. P. Escoubet, A. Masson, H. J. Opgenoorth, C. Vallat, P. W. Daly, A. N. Fazakerley, and E. A. Lucek, Cluster encounter with an energetic electron beam during a substorm, J. Geophys. Res., 111, A11203, doi:10.1029/2006JA011666, 2006.

    Google Scholar 

  56. Thorne, R. M., T. P. O’Brien, Y. Y. Shprits, D. Summers, and R. B. Horne, Timescale for MeV electron microburst loss during geomagnetic storms, J. Geophys. Res., 110, A09202, doi:10.1029/2004JA010882, 2005.

    Google Scholar 

  57. Thorne, R. M., Y. Y. Shprits, N. P. Meredith, R. B. Horne, W. Li, and L. R. Lyons, Refilling of the slot region between the inner and outer electron radiation belts during geomagnetic storms, J. Geophys. Res., 112, A06203, doi:10.1029/2006JA012176, 2007.

    Google Scholar 

  58. Tsyganenko, N. A. and M. I. Sitnov, Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, J. Geophys. Res., 110, A03208, doi:10.1029/2004JA010798, 2005.

    Google Scholar 

  59. Tsyganenko, N. A., H. J. Singer, and J. C. Kasper, Storm-time distortion of the inner magnetosphere: How severe can it get?, J. Geophys. Res., 108(A5), 1029, doi:10.1029/2002JA009808, 2003.

    Google Scholar 

  60. Tverskaya, L. V., N. N. Pavlov, J. B. Blake, R. S. Selesnick, and J. F. Fennell, Predicting the L-position of the storm-injected relativistic electron belt, Adv. Space. Res., 31, 1039, 2003.

    Article  ADS  Google Scholar 

  61. Wilken, B., W. I. Axford, I. Daglis, P. Daly, W. Gttler, W. H. IP, A. Korth, G. Kremser, S. Livi, V. M. Vasliunas, J. Woch, D. N. Baker, R. D. Belian, J. B. Blake, J. F. Fennell, L. R. Lyons, H. Borg, T. A. Fritz, F. Gliem, R. Rathje, M. Grande, D. Hall, K. Kecscuemety, S. Mckenna-Lawlor, K. Mursula, P. Tanskanen, Z. Pu, I. Sandahl, E. T. Sarris, M. Scholer, M. Schulz, F. Sorass, and S. Ullaland, RAPID: The Imaging Energetic Particle Spectrometer on Cluster, Space. Sci. Rev., 79, 399–473, 1997.

    Article  ADS  Google Scholar 

  62. Williams, D. J., A 27-Day Periodicity in Outer Zone Trapped Electron Intensities, J. Geophys. Res., 71, 1815, 1966.

    ADS  Google Scholar 

  63. Young, S. L., R. E. Denton, B. J. Anderson, and M. K. Hudson, Empirical model for μ scattering caused by field line curvature in a realistic magnetosphere, J. Geophys. Res., 107, 1069, 10.1029/2000JA000294, 2002.

    Google Scholar 

  64. Young, S. L., R. E. Denton, B. J. Anderson, and M. K. Hudson, Magnetic field line curvature induced pitch angle diffusion in the inner magnetosphere, J. Geophys. Res., 113, A03210, doi:10.1029/2006JA012133, 2008.

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge their many colleagues at The Aerospace Corporation that have supported their efforts, provided references, and participated in discussions on the topic of energetic electron sources and process in the magnetosphere. This work was supported by grants GC189637NGA from Boston University, 64361 from University of Colorado, and by The Aerospace Corporation’s Mission Oriented Investigation and Experimentation program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Fennell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Fennell, J.F., Roeder, J.L. (2010). Evolution and Energization of Energetic Electrons in the Inner Magnetosphere. In: Laakso, H., Taylor, M., Escoubet, C. (eds) The Cluster Active Archive. Astrophysics and Space Science Proceedings. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3499-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3499-1_34

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3498-4

  • Online ISBN: 978-90-481-3499-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics