Skip to main content

Modeling and Simulation of Heavy Metals Removal From Drinking Water by Magnetic Zeolite

  • Conference paper

Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

Recent decades have witnessed a growing awareness and concern about the availability and quality of drinking water. The impact on human health of high toxicity compounds, including heavy metal, such as lead, cadmium, arsenic, among others, has lead to ever lower limits for a wide variety of chemicals. To respond to these challenges there is a need to develop new and even better methods to purify drinking water. Besides experimental work, process modeling and simulation plays a key role in the development of new treatment processes for drinking water. This paper focuses on the separation of heavy metals from drinking water by adsorption, in particular for arsenic removal. Common modeling and simulation strategies for this process are presented, being their relative merits discussed and assessed. The process is illustrated with real experimental data obtained from an adsorption system based on a modified magnetic zeolite. This article also examines how modeling and simulation can be used in practice, to support the development of new and better processes for the removal of heavy metals from drinking water, to improve the purification process, and meet the current and future requirements.

Keywords

  • Toxic metals
  • arsenic
  • removal
  • adsorption
  • iron oxides
  • magnetic zeolite

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-90-481-3497-7_6
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-90-481-3497-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.00
Price excludes VAT (USA)
Hardcover Book
USD   339.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.M. Chowdhuri, Arsenic crisis in Bangladesh, Sci. Am. August 2004, 86–91 (2004).

    Google Scholar 

  2. B.K. Mandal, and K.T. Suzuki, Arsenic round the world: a review, Talanta 58, 201–235 (2002).

    CrossRef  CAS  Google Scholar 

  3. S.C.R. Smedley, V.J.P. Villar, and R. Boaventura, Waste metal hydroxide sludge as adsorbent for a reactive dye, J. Hazard. Mater. 153, 999–1008 (2008).

    CrossRef  Google Scholar 

  4. S. Kapaj, H. Peterson, K. Liber, and P. Bhattachary, Human health effects from chronic arsenic poisoning — a review, J. Environ. Sci. Health, Part A 41, 2399–2428 (2006).

    Google Scholar 

  5. J.C. Ng, J. Wang, and A. Shraim, A global health problem caused by arsenic from natural sources, Chemosphere 52, 1353–1359 (2003).

    CrossRef  CAS  Google Scholar 

  6. J.G. Hering, P.Y. Chen, J.A. Wilke, and M. Elimelech, Arsenic removal from drinking water during coagulation, J. Environ. Eng. 8, 800–807 (1997).

    Google Scholar 

  7. D. Mohan, and C.U. Pittman Jr., Arsenic removal from water/wastewater using adsorbents — a critical review, J. Hazard Mater 142, 1–53 (2007).

    CrossRef  CAS  Google Scholar 

  8. A.E. Pagana, S.D. Sklari, E.S. Kikkinides, and V.T. Zaspalis, Microporous ceramic membrane technology for the removal of arsenic and chromium ions from contaminated water, Microporous Mesoporous Mater. 110, 150–156 (2008).

    CrossRef  CAS  Google Scholar 

  9. G.G. Kagramanov, P.S. Sudilovskiy, and A.M. Trushin. Use of membrane for heavy metal cationic wastewater treatment: flotation and membrane filtration, Clean Technol Environl Policy 9, 189–198 (2007).

    CrossRef  Google Scholar 

  10. R.Y. Ning, Arsenic removal by reverse osmosis, Desalination 143, 237–241 (2002).

    CrossRef  CAS  Google Scholar 

  11. I.A. Katsoyiannis, and A.I. Zouboulis, Application of biological processes for the removal of arsenic from groundwaters, Water Res 38, 17–26 (2004).

    CrossRef  CAS  Google Scholar 

  12. V.K. Sharma, P.K. Dutta, and A.K. Ray, Review of kinetics of chemical and photocatalytical oxidation of arsenic(III) as influenced by pH, J. Environ Sci Health Part A 42, 997–1004 (2007).

    CrossRef  Google Scholar 

  13. A. Maldonado-Reyes, C. Montero-Ocampo, and O. Solorza-Feria, Remediation of drinking water contaminated with arsenic by the electro-removal process using different metal electrodes, J. Environ. Monitor. 9, 1241–1247 (2007).

    CrossRef  CAS  Google Scholar 

  14. Y. Jeong, M. Fan, S. Singh, C.L. Chuang, B. Saha, and J. Hans van Leeuwen, Evaluation of iron oxide and aluminum oxide as potential arsenic(V) adsorbents, Chem. Eng. Process. 46, 1030–1039 (2007).

    CAS  Google Scholar 

  15. K.B. Payne, and T.M. Abdel-Fattah, Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites: effects of pH, temperature, and ionic strength, J. Environ. Sci. Health, 40, 723–749 (2005).

    CrossRef  CAS  Google Scholar 

  16. J. Giménez, M. Martínez, J. de Pablo, M. Rovira, and L. Duro, Arsenic sorption onto natural hematite, magnetite, and goethite, J. Hazard. Mater. 141, 575–580 (2007).

    CrossRef  Google Scholar 

  17. M. Vaclavikova, G.P. Gallios, S. Hredzak, and S. Jakabsky, Removal of arsenic from water streams: an overview of available techniques, Clean Technol. Environ. Policy 10(1), 89–95 (2008).

    CrossRef  CAS  Google Scholar 

  18. U.S. EPA, 2003, Arsenic treatment technology evaluation handbook for small systems, EPA 816-R-03–014. (http://www.epa.gov/safewater)

  19. T.S.Y. Choong, T.G. Chuaha, Y. Robiah, F.L.G. Koay, and I. Azni, Arsenic toxicity, health hazards and removal techniques from water: an overview, Desalination 217, 139–166 (2007).

    CrossRef  CAS  Google Scholar 

  20. M. Vaclavikova, M. Matik, G.P. Gallios, S. Jakabsky, and S. Hredzak, The synthesis and characterization of Fe nanostructures inside porous zeolites and their applications in water treatment technologies. In: Carbon Nanotubes, edited by Popov, V., Lambin, P., Springer, UK, 2005, pp. 239–240.

    Google Scholar 

  21. D.E. Seborg, T.F. Edgar, and D.A. Mellichamp, Process Dynamics and Control, Wiley, Canada, 1989, pp. 16–17.

    Google Scholar 

  22. A.E. Rodrigues, P. Oliveira, J.A. Castro, J.A. Ferreira, and M.C. Coimbra, Modelling and Simulation in Chemical Engineering, Centro Internacional de Matemática (CIN), Coimbra, Portugal, June 30–July 4 (2003).

    Google Scholar 

  23. D.M. Ruthven, Principles of Adsorption and Adsorption Processes, Wiley, New York, 1984, pp. 166–205.

    Google Scholar 

  24. R.T. Yang, Gas Separation by Adsorption Processes, Butterworth Publishers, Stoneham, MA, 1997.

    Google Scholar 

  25. M.D. Levan and G. Carta, Perry's Chemical Engineers's Handbook, Section 16 — Adsorption and Ion Exchange, 8th Edition, McGraw-Hill, New York, 2008.

    Google Scholar 

  26. A.A. Martins, P.E. Laranjeira, J.C.B. Lopes, M.M. Dias, Network modelling of flow in a packed bed, AIChE J. 53(1), 91–107 (2007).

    CrossRef  CAS  Google Scholar 

  27. C.Y. Wen, and L.T. Fan, Models for Flow Systems and Chemical Reactors, Marcel Dekker, New York, 1975.

    Google Scholar 

  28. H. Fogler, Elements of Chemical Reaction Engineering, 2nd Edition, Prentice-Hall, 1992.

    Google Scholar 

  29. D.D. Do, Adsorption Analysis: Equilbria and Kinetics, Imperial College Press, London, 1998.

    CrossRef  Google Scholar 

  30. M. Vaclavikova, S. Jakabsky, and S. Hredzak, Magnetic Nanoscale Particles as Sorbents For Removal of Heavy Metal Ions. In: Nanoengineered Materials, edited by Guceru, S., Gogotsi, Y.C., Kuznetzov, V., Springer, UK, 2004, pp. 481–486.

    Google Scholar 

  31. A.E. Rodrigues, M.D. Levan, and D. Tondeur D., Adsorption: Science and Technology, Kluwer, London, 1989.

    Google Scholar 

  32. W.J. Weber, and E.H. Smith, Simulation and design models for adsorption processes, Environ. Sci. Technol. 21, 1040–1050 (1987).

    CrossRef  CAS  Google Scholar 

  33. R.C. Vaishya, and S.K. Gupta, Modeling arsenic(III) adsorption from water by sulfate-modified iron oxide-coated sand (SMIOCS), J. Chem. Technol. Biotechnol. 78, 73–80 (2002).

    CrossRef  Google Scholar 

  34. T.S. Singh, and K.K. Pant, Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina, Sep. Purif. Technol. 36, 139–147 (2004).

    CrossRef  CAS  Google Scholar 

  35. T.S. Singh, and K.K. Pant, Experimental and modeling studies on fixed bed adsorption of As(III) ions from aqueous solution, Sep. Purif. Technol. 48(3), 288–296 (2006).

    CrossRef  CAS  Google Scholar 

  36. S. Kuriakose, T.S. Singh, and K.K. Pant, Adsorption of As(III) from aqueous solution onto Iron oxide coated activated alumina, Water Qual. Res. J. Can. 39, 260–268 (2004).

    Google Scholar 

  37. O.S. Thirunavukkarasu, T. Viraraghavan, K.S. Subramanian, O. Chaalal, and M.R. Islam, arsenic removal in drinking water — impacts and novel removal technologies, Energy Sources 27, 209–219 (2005).

    CrossRef  CAS  Google Scholar 

  38. F. Beolchini, F. Pagnanelli, I. De Michelis, F. Vegliò, Micellar enhanced ultrafiltration for arsenic(V) removal: effect of main operating conditions and dynamic modeling, Environ. Sci. Technol. 40(8), 2746–2752 (2006).

    CrossRef  CAS  Google Scholar 

  39. M.S. Onyango, Y. Kojima, H. Matsuda, and A. Ochieng, Adsorption kinetics of arsenic removal from groundwater by iron-modified zeolite, J. Chem. Eng. Jpn, 36(12), 1516– 1522 (2003).

    CrossRef  CAS  Google Scholar 

  40. P.L. Santos, and D.G. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters, Appl. Geochem. 17, 517–568 (2002).

    CrossRef  Google Scholar 

  41. P. Vanysek, Ionic conductivity and diffusion at infinite dilution. In: CRC Handbook of Chemistry and Physics, 81st ed., Cleveland, OH, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Martins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Martins, A., Mata, T.M., Gallios, G.P., Václavíková, M., Stefusova, K. (2009). Modeling and Simulation of Heavy Metals Removal From Drinking Water by Magnetic Zeolite. In: Václavíková, M., Vitale, K., Gallios, G.P., Ivaničová, L. (eds) Water Treatment Technologies for the Removal of High-Toxicity Pollutants. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3497-7_6

Download citation