Skip to main content

Dps and Bacterial Chromatin

  • Chapter

Abstract

When Dps was first discovered in Escherichia coli it was soon realized that it is an unusual protein. The purified Dps bound efficiently, but non-specifically, to DNA forming highly ordered complexes and mutants lacking Dps were sensitive to oxidative stress. Since then Dps proteins have been found in many bacteria. Structural studies revealed that the Dps monomer forms a bundle structure resembling the iron binding ferritins and bacterioferritins and upon oligomerization it assembles into a dodecamer with a hollow core. Like ferritins Dps proteins are also able to sequester and detoxify iron through a ferroxidase center that uniquely to the Dps family is shared between two monomers. Thus, the protective capabilities of Dps rely both on its ability to bind and physically protect DNA and its ability to detoxify iron that otherwise may catalyze the production of toxic free radicals. On the other hand Dps can also be used for iron storage under iron limiting conditions. Iron restriction and oxidative stress characterizes the environment that bacterial pathogens encounter in the human host and Dps proteins are required for full virulence of several pathogens. Thus, Dps is a versatile protein that at multiple levels protects bacterial cells against stress.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams TJ, Vartivarian S, Cowart RE (1990) Iron acquisition systems of Listeria monocytogenes. Infect Immun 58:2715-2718

    CAS  PubMed  Google Scholar 

  • Almirón M, Link AJ, Furlong D, Kolter R (1992) A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev 6:2646-2654

    PubMed  Google Scholar 

  • Altuvia S, Almirón M, Huisman G, Kolter R, Storz G (1994) The dps promoter is activated by OxyR during growth and by IHF and σS in stationary phase. Mol Microbiol 13:265-272

    CAS  PubMed  Google Scholar 

  • Andrews SC (1998) Iron storage in bacteria. Adv Microb Physiol 40:281-351

    CAS  PubMed  Google Scholar 

  • Antelmann H, Engelmann S, Schmid R, Sorokin A, Lapidus A, Hecker M (1997) Expression of a stress- and starvation-induced dps/pexB-homologous gene is controlled by the alternative sigma factor σB in Bacillus subtilis. J Bacteriol 179:7251-7256

    CAS  PubMed  Google Scholar 

  • Atlung T, Ingmer H (1997) H-NS: a modulator of environmentally regulated gene expression. Mol Microbiol 24:7-17

    CAS  PubMed  Google Scholar 

  • Baichoo N, Helmann JD (2002) Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence. J Bacteriol 184:5826-5832

    CAS  PubMed  Google Scholar 

  • Bhattacharyya G, Grove A (2007) The N-terminal extensions of Deinococcus radiodurans Dps-1 mediate DNA major groove interactions as well as assembly of the dodecamer. J Biol Chem 282:11921-11930

    CAS  PubMed  Google Scholar 

  • Bjedov I, Tenaillon O, Gérard B, Souza V, Denamur E, Radman M, Taddei F, Matic I (2003) Stress-induced mutagenesis in bacteria. Science 300:1404-1409

    CAS  PubMed  Google Scholar 

  • Bozzi M, Mignogna G, Stefanini S, Barra D, Longhi C, Valenti P, Chiancone E (1997) A novel non-heme iron-binding ferritin related to the DNA-binding proteins of the Dps family in Listeria innocua. J Biol Chem 272:3259-3265

    CAS  PubMed  Google Scholar 

  • Bramhill D, Kornberg A (1988) A model for initiation at origins of DNA replication. Cell 54:915-918

    CAS  PubMed  Google Scholar 

  • Brenot A, King KY, Caparon MG (2005) The PerR regulon in peroxide resistance and virulence of Streptococcus pyogenes. Mol Microbiol 55:221-234

    CAS  PubMed  Google Scholar 

  • Brisslert M, Enarsson K, Lundin S, Karlsson A, Kusters JG, Svennerholm AM, Backert S, Quiding-Järbrink M (2005) Helicobacter pylori induce neutrophil transendothelial migration: role of the bacterial HP-NAP. FEMS Microbiol Lett 249:95-103

    CAS  PubMed  Google Scholar 

  • Bsat N, Chen L, Helmann JD (1996) Mutation of the Bacillus subtilis alkyl hydroperoxide reductase (ahpCF) operon reveals compensatory interactions among hydrogen peroxide stress genes. J Bacteriol 178:6579-6586

    CAS  PubMed  Google Scholar 

  • Bsat N, Herbig A, Casillas-Martinez L, Setlow P, Helmann JD (1998) Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol 29:189-198

    CAS  PubMed  Google Scholar 

  • Ceci P, Ilari A, Falvo E, Chiancone E (2003) The Dps protein of Agrobacterium tumefaciens does not bind to DNA, but protects it towards oxidative cleavage. X-ray crystal structure, iron binding and hydroxyl-radical scavenging properties. J Biol Chem 278:20319-20326

    CAS  PubMed  Google Scholar 

  • Ceci P, Cellai S, Falvo E, Rivetti C, Rossi GL, Chiancone E (2004) DNA condensation and self-aggregation of Escherichia coli Dps are coupled phenomena related to the properties of the N-terminus. Nucleic Acids Res 32:5935-5944

    CAS  PubMed  Google Scholar 

  • Ceci P, Mangiarotti L, Rivetti C, Chiancone E (2007) The neutrophil-activating Dps protein of Helicobacter pylori, HP-NAP, adopts a mechanism different from Escherichia coli Dps to bind and condense DNA. Nucleic Acids Res 35:2247-2256

    CAS  PubMed  Google Scholar 

  • Chen L, Helmann JD (1995) Bacillus subtilis MrgA is a Dps (PexB) homologue: evidence for metalloregulation of an oxidative-stress gene. Mol Microbiol 18:295-300

    CAS  PubMed  Google Scholar 

  • Chen L, James LP, Helmann JD (1993) Metalloregulation in Bacillus subtilis: isolation and characterization of two genes differentially repressed by metal ions. J Bacteriol 175:5428-5437

    CAS  PubMed  Google Scholar 

  • Chen L, Keramati L, Helmann JD (1995) Coordinate regulation of Bacillus subtilis peroxide stress genes by hydrogen peroxide and metal ions. Proc Natl Acad Sci USA 92:8190-8194

    CAS  PubMed  Google Scholar 

  • Chodavarapu S, Gomez R, Vicente M, Kaguni JM (2008) Escherichia coli Dps interacts with DnaA protein to impede initiation: a model of adaptive mutation. Mol Microbiol 67:1331-1334

    CAS  PubMed  Google Scholar 

  • Clark RA (1990) The human neutrophil respiratory burst oxidase. J Infect Dis 161:1140-1147

    CAS  PubMed  Google Scholar 

  • Cooksley C, Jenks PJ, Green A, Cockayne A, Logan RP, Hardie KR (2003) NapA protects Helicobacter pylori from oxidative stress damage, and its production is influenced by the ferric uptake regulator. J Med Microbiol 52:461-469

    CAS  PubMed  Google Scholar 

  • Coulanges V, André P, Vidon DJM (1996) Esculetin antagonizes iron-chelating agents and increases the virulence of Listeria monocytogenes. Res Microbiol 147:677-685

    CAS  PubMed  Google Scholar 

  • Cowart RE, Foster BG (1985) Differential effects of iron on the growth of Listeria monocytogenes: minimum requirements and mechanism of acquisition. J Infect Dis 151:721-730

    CAS  PubMed  Google Scholar 

  • Crosa JH (1997) Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. Microbiol Mol Biol Rev 61:319-336

    CAS  PubMed  Google Scholar 

  • Davies GR, Simmonds NJ, Stevens TR, Sheaff MT, Banatvala N, Laurenson IF, Blake DR, Rampton DS (1994) Helicobacter pylori stimulates antral mucosal reactive oxygen metabolite production in vivo. Gut 35:179-185

    CAS  PubMed  Google Scholar 

  • Dorman CJ (2004) H-NS: a universal regulator for a dynamic genome. Nat Rev Microbiol 2:391-400

    CAS  PubMed  Google Scholar 

  • Dunn BE, Cohen H, Blaser MJ (1997) Helicobacter pylori. Clin Microbiol Rev 10:720-741

    CAS  PubMed  Google Scholar 

  • Dussurget O, Dumas E, Archambaud C, Chafsey I, Chambon C, Hébraud M, Cossart P (2005) Listeria monocytogenes ferritin protects against multiple stresses and is required for virulence. FEMS Microbiol Lett 250:253-261

    CAS  PubMed  Google Scholar 

  • Eriksson S, Lucchini S, Thompson A, Rhen M, Hinton JC (2003) Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 47:103-118

    CAS  PubMed  Google Scholar 

  • Evans DJ Jr, Evans DG, Takemura T, Nakano H, Lampert HC, Graham DY, Granger DN, Kvietys PR (1995) Characterization of a Helicobacter pylori neutrophil-activating protein. Infect Immun 63:2213-3320

    CAS  PubMed  Google Scholar 

  • Farr SB, Kogoma T (1991) Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev 55:561-585

    CAS  PubMed  Google Scholar 

  • Fiorini F, Stefanini S, Valenti P, Chiancone E, De Biase D (2008) Transcription of the Listeria monocytogenes fri gene is growth-phase dependent and is repressed directly by Fur, the ferric uptake regulator. Gene 410:113-121

    CAS  PubMed  Google Scholar 

  • Frees D, Savijoki K, Varmanen P, Ingmer H (2007) Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Mol Microbiol 63:1285-1289

    CAS  PubMed  Google Scholar 

  • Frenkiel-Krispin D, Levin-Zaidman S, Shimoni E, Wolf SG, Wachtel EJ, Arad T, Finkel SE, Kolter R, Minsky A (2001) Regulated phase transitions of bacterial chromatin: a non-enzymatic pathway for generic DNA protection. EMBO J 20:1184-1191

    CAS  PubMed  Google Scholar 

  • Frenkiel-Krispin D, Ben-Avraham I, Englander J, Shimoni E, Wolf SG, Minsky A (2004a) Nucleoid restructuring in stationary-state bacteria. Mol Microbiol 51:395-405

    CAS  PubMed  Google Scholar 

  • Frenkiel-Krispin D, Sack R, Englander J, Shimoni E, Eisenstein M, Bullitt E, Horowitz-Scherer R, Hayes CS, Setlow P, Minsky A, Wolf SG (2004b) Structure of the DNA-SspC complex: implications for DNA packaging, protection, and repair in bacterial spores. J Bacteriol 186:3525-3530

    CAS  PubMed  Google Scholar 

  • Fuangthong M, Helmann JD (2003) Recognition of DNA by three ferric uptake regulator (Fur) homologs in Bacillus subtilis. J Bacteriol 185:6348-6357

    CAS  PubMed  Google Scholar 

  • Gangaidzo IT, Moyo VM, Mvundura E, Aggrey G, Murphree NL, Khumalo H, Saungweme T, Kasvosve I, Gomo ZA, Rouault T, Boelaert JR, Gordeuk VR (2001) Association of pulmonary tuberculosis with increased dietary iron. J Infect Dis 184:936-939

    CAS  PubMed  Google Scholar 

  • Grainger DC, Goldberg MD, Lee DJ, Busby SJ (2008) Selective repression by Fis and H-NS at the Escherichia coli dps promoter. Mol Microbiol 68:1366-1377

    CAS  PubMed  Google Scholar 

  • Grant RA, Filman DJ, Finkel SE, Kolter R, Hogle JM (1998) The crystal structure of Dps, a ferritin homolog that binds and protects DNA. Nat Struct Biol 5:294-303

    CAS  PubMed  Google Scholar 

  • Grove A, Wilkinson SP (2005) Differential DNA binding and protection by dimeric and dodecameric forms of the ferritin homolog Dps from Deinococcus radiodurans. J Mol Biol 347:495-450

    CAS  PubMed  Google Scholar 

  • Gupta S, Chatterji D (2003) Bimodal protection of DNA by Mycobacterium smegmatis Dps. J Biol Chem 278:5235-5241

    CAS  PubMed  Google Scholar 

  • Gupta S, Pandit SB, Srinivasan N, Chatterji D (2002) Proteomics analysis of carbon-starved Mycobacterium smegmatis: induction of Dps-like protein. Protein Eng 15:503-511

    CAS  PubMed  Google Scholar 

  • Halsey TA, Vazquez-Torres A, Gravdahl DJ, Fang FC, Libby SJ (2004) The ferritin-like Dps protein is required for Salmonella enterica serovar Typhimurium oxidative stress resistance and virulence. Infect Immun 72:1155-1158

    CAS  PubMed  Google Scholar 

  • Hanna ES, Roque-Barreira MC, Bernardes ES, Panunto-Castelo A, Sousa MV, Almeida IC, Brocchi M (2007) Evidence for glycosylation on a DNA-binding protein of Salmonella enterica. Microb Cell Fact 6:11

    PubMed  Google Scholar 

  • Hanna ES, Roque-Barreira MC, Mendes GM, Soares SG, Brocchi M (2008) Cloning, expression and purification of a glycosylated form of the DNA-binding protein Dps from Salmonella enterica Typhimurium. Protein Exp Purif 59:197-202

    CAS  Google Scholar 

  • Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275:161-203

    PubMed  Google Scholar 

  • Hartford T, O’Brien S, Andrew PW, Jones D, Roberts IS (1993) Utilization of transferrin-bound iron by Listeria monocytogenes. FEMS Microbiol Lett 108:311-318

    CAS  PubMed  Google Scholar 

  • Hatfield GW, Benham CJ (2002) DNA topology-mediated control of global gene expression in Escherichia coli. Annu Rev Genet 36:175-203

    CAS  PubMed  Google Scholar 

  • Havukainen H, Haataja S, Kauko A, Pulliainen AT, Salminen A, Haikarainen T, Finne J, Papageorgiou AC (2008) Structural basis of the zinc- and terbium-mediated inhibition of ferroxidase activity in Dps ferritin-like proteins. Protein Sci 17:1513-1521

    CAS  PubMed  Google Scholar 

  • Hébraud M, Guzzo J (2000) The main cold shock protein of Listeria monocytogenes belongs to the family of ferritin-like proteins. FEMS Microbiol Lett 190:29-34

    PubMed  Google Scholar 

  • Henle ES, Linn S (1997) Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J Biol Chem 272:19095-19098

    CAS  PubMed  Google Scholar 

  • Herbig AF, Helmann JD (2001) Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol Microbiol 41:849-859

    CAS  PubMed  Google Scholar 

  • Higuchi M, Yamamoto Y, Kamio Y (2000) Molecular biology of oxygen tolerance in lactic acid bacteria: functions of NADH oxidases and Dpr in oxidative stress. J Biosci Bioeng 90:484-493

    CAS  PubMed  Google Scholar 

  • Hurst JK, Barrette WC Jr (1989) Leukocytic oxygen activation and microbicidal oxidative toxins. Crit Rev Biochem Mol Biol 24:271-328

    CAS  PubMed  Google Scholar 

  • Ilari A, Stefanini S, Chiancone E, Tsernoglou D (2000) The dodecameric ferritin from Listeria innocua contains a novel intersubunit iron-binding site. Nat Struct Biol 7:38-43

    CAS  PubMed  Google Scholar 

  • Ilari A, Ceci P, Ferrari D, Rossi GL, Chiancone E (2002) Iron incorporation into Escherichia coli Dps gives rise to a ferritin-like microcrystalline core. J Biol Chem 277:37619-37623

    CAS  PubMed  Google Scholar 

  • Ishikawa T, Mizunoe Y, Kawabata S, Takade A, Harada M, Wai SN, Yoshida S (2003) The iron-binding protein Dps confers hydrogen peroxide stress resistance to Campylobacter jejuni. J Bacteriol 185:1010-1017

    CAS  PubMed  Google Scholar 

  • Kathariou S (2002) Listeria monocytogenes virulence and pathogenicity, a food safety perspective. J Food Prot 65:1811-1829

    PubMed  Google Scholar 

  • Kauko A, Pulliainen AT, Haataja S, Meyer-Klaucke W, Finne J, Papageorgiou AC (2006) Iron incorporation in Streptococcus suis Dps-like peroxide resistance protein Dpr requires mobility in the ferroxidase center and leads to the formation of a ferrihydrite-like core. J Mol Biol 364:97-109

    CAS  PubMed  Google Scholar 

  • Kim SG, Bhattacharyya G, Grove A, Lee YH (2006) Crystal structure of Dps-1, a functionally distinct Dps protein from Deinococcus radiodurans. J Mol Biol 361:105-111

    CAS  PubMed  Google Scholar 

  • Kottakis F, Papadopoulos G, Pappa EV, Cordopatis P, Pentas S, Choli-Papadopoulou T (2008) Helicobacter pylori neutrophil-activating protein activates neutrophils by its C-terminal region even without dodecamer formation, which is a prerequisite for DNA protection-novel approaches against Helicobacter pylori inflammation. FEBS J 275:302-317

    CAS  PubMed  Google Scholar 

  • Lee JW, Helmann JD (2007) Functional specialization within the Fur family of metalloregulators. Biometals 20:485-499

    CAS  PubMed  Google Scholar 

  • Lee C, Lee SM, Mukhopadhyay P, Kim SJ, Lee SC, Ahn WS, Yu MH, Storz G, Ryu SE (2004) Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nat Struct Mol Biol 11:1179-1185

    CAS  PubMed  Google Scholar 

  • Levin-Zaidman S, Englander J, Shimoni E, Sharma AK, Minton KW, Minsky A (2003) Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance? Science 299:254-256

    CAS  PubMed  Google Scholar 

  • Li X, Pal U, Ramamoorthi N, Liu X, Desrosiers DC, Eggers CH, Anderson JF, Radolf JD, Fikrig E (2007) The Lyme disease agent Borrelia burgdorferi requires BB0690, a Dps homologue, to persist within ticks. Mol Microbiol 63:694-710

    CAS  PubMed  Google Scholar 

  • Liu S, Graham JE, Bigelow L, Morse PD, Wilkinson BJ (2002) Identification of Listeria monocytogenes genes expressed in response to growth at low temperature. Appl Environ Microbiol 68:1697-1705

    CAS  PubMed  Google Scholar 

  • Liu X, Kim K, Leighton T, Theil EC (2006) Paired Bacillus anthracis Dps (mini-ferritin) have different reactivities with peroxide. J Biol Chem 281:27827-27835

    CAS  PubMed  Google Scholar 

  • Lomovskaya OL, Kidwell JP, Matin A (1994) Characterization of the σ38-dependent expression of a core Escherichia coli starvation gene, pexB. J Bacteriol 176:3928-3935

    CAS  PubMed  Google Scholar 

  • Lu AL, Li X, Gu Y, Wright PM, Chang DY (2001) Repair of oxidative DNA damage: mechanisms and functions. Cell Biochem Biophys 35:141-170

    CAS  PubMed  Google Scholar 

  • Luo Y, Han Z, Chin SM, Linn S (1994) Three chemically distinct types of oxidants formed by iron-mediated Fenton reactions in the presence of DNA. Proc Natl Acad Sci USA 91:12438-12442

    CAS  PubMed  Google Scholar 

  • Martinez A, Kolter R (1997) Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. J Bacteriol 179:5188-5194

    CAS  PubMed  Google Scholar 

  • Matin A (1991) The molecular basis of carbon-starvation-induced general resistance in Escherichia coli. Mol Microbiol 5:3-10

    CAS  PubMed  Google Scholar 

  • Miller RA, Britigan BE (1997) Role of oxidants in microbial pathophysiology. Clin Microbiol Rev 10:1-18

    CAS  PubMed  Google Scholar 

  • Mizuki I, Shimoyama T, Fukuda S, Liu Q, Nakaji S, Munakata A (2000) Association of gastric epithelial apoptosis with the ability of Helicobacter pylori to induce a neutrophil oxidative burst. J Med. Microbiol 49:521-524

    CAS  PubMed  Google Scholar 

  • Mohamed W, Darji A, Domann E, Chiancone E, Chakraborty T (2006) The ferritin-like protein Frm is a target for the humoral immune response to Listeria monocytogenes and is required for efficient bacterial survival. Mol Genet Genomics 275:344-353

    CAS  PubMed  Google Scholar 

  • Morikawa K, Ohniwa RL, Kim J, Maruyama A, Ohta T, Takeyasu K (2006) Bacterial nucleoid dynamics: oxidative stress response in Staphylococcus aureus. Genes Cells 11:409-423

    CAS  PubMed  Google Scholar 

  • Morikawa K, Ohniwa RL, Kim J, Takeshita SL, Maruyama A, Inose Y, Takeyasu K, Ohta T (2007) Biochemical, molecular genetic, and structural analyses of the staphylococcal nucleoid. Microsc Microanal 13:30-35

    CAS  PubMed  Google Scholar 

  • Nair S, Finkel SE (2004) Dps protects cells against multiple stresses during stationary phase. J Bacteriol 186:4192-4198

    CAS  PubMed  Google Scholar 

  • Namavar F, Sparrius M, Veerman EC, Appelmelk BJ, Vandenbroucke-Grauls CM (1998) Neutrophil-activating protein mediates adhesion of Helicobacter pylori to sulfated carbohydrates on high-molecular-weight salivary mucin. Infect Immun 66:444-447

    CAS  PubMed  Google Scholar 

  • Nicodème M, Perrin C, Hols P, Bracquart P, Gaillard JL (2004) Identification of an iron-binding protein of the Dps family expressed by Streptococcus thermophilus. Curr Microbiol 48:51-56

    PubMed  Google Scholar 

  • Ohniwa RL, Morikawa K, Kim J, Ohta T, Ishihama A, Wada C, Takeyasu K (2006) Dynamic state of DNA topology is essential for genome condensation in bacteria. EMBO J 25:5591-5602

    CAS  PubMed  Google Scholar 

  • Olczak AA, Olson JW, Maier RJ (2002) Oxidative-stress resistance mutants of Helicobacter pylori. J Bacteriol 184:3186-3193

    CAS  PubMed  Google Scholar 

  • Olsen KN, Larsen MH, Gahan CG, Kallipolitis B, Wolf XA, Rea R, Hill C, Ingmer H (2005) The Dps-like protein Fri of Listeria monocytogenes promotes stress tolerance and intracellular multiplication in macrophage-like cells. Microbiology 151:925-933

    CAS  PubMed  Google Scholar 

  • Papinutto E, Dundon WG, Pitulis N, Battistutta R, Montecucco C, Zanotti G (2002) Structure of two iron-binding proteins from Bacillus anthracis. J Biol Chem 277:15093-15098

    CAS  PubMed  Google Scholar 

  • Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D, Chillingworth T, Davies RM, Feltwell T, Holroyd S, Jagels K, Karlyshev AV, Moule S, Pallen MJ, Penn CW, Quail MA, Rajandream MA, Rutherford KM, van Vliet AH, Whitehead S, Barrell BG (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665-668

    CAS  PubMed  Google Scholar 

  • Peña MMO, Bullerjahn GS (1995) The DpsA protein of Synechococcus sp. strain PCC7942 is a DNA-binding hemoprotein. J Biol Chem 270:22478-22482

    PubMed  Google Scholar 

  • Phadtare S, Inouye M (2004) Genome-wide transcriptional analysis of the cold shock response in wild-type and cold-sensitive, quadruple-csp-deletion strains of Escherichia coli. J Bacteriol 186:7007-7014

    CAS  PubMed  Google Scholar 

  • Phan-Thanh L, Gormon T (1995) Analysis of heat and cold shock proteins in Listeria by two-dimensional electrophoresis. Electrophoresis 16:444-450

    CAS  PubMed  Google Scholar 

  • Pogliano K, Harry E, Losick R (1995) Visualization of the subcellular location of sporulation proteins in Bacillus subtilis using immunofluorescence microscopy. Mol Microbiol 18:459-470

    CAS  PubMed  Google Scholar 

  • Polidoro M, de Biase D, Montagnini B, Guarrera L, Cavallo S, Valenti P, Stefanini S, Chiancone E (2002) The expression of the dodecameric ferritin in Listeria spp. is induced by iron limitation and stationary growth phase. Gene 296:121-128

    CAS  PubMed  Google Scholar 

  • Pulliainen AT, Haataja S, Kahkonen S, Finne J (2003) Molecular basis of H2O2 resistance mediated by Streptococcal Dpr. Demonstration of the functional involvement of the putative ferroxidase center by site-directed mutagenesis in Streptococcus suis. J Biol Chem 278:7996-8005

    CAS  PubMed  Google Scholar 

  • Pulliainen AT, Kauko A, Haataja S, Papageorgiou AC, Finne J (2005) Dps/Dpr ferritin-like protein: insights into the mechanism of iron incorporation and evidence for a central role in cellular iron homeostasis in Streptococcus suis. Mol Microbiol 57:1086-1100

    CAS  PubMed  Google Scholar 

  • Ragkousi K, Cowan AE, Ross MA, Setlow P (2000) Analysis of nucleoid morphology during germination and outgrowth of spores of Bacillus species. J Bacteriol 182:5556-5562

    CAS  PubMed  Google Scholar 

  • Ramsay B, Wiedenheft B, Allen M, Gauss GH, Lawrence CM, Young M, Douglas T (2006) Dps-like protein from the hyperthermophilic archaeon Pyrococcus furiosus. J Inorg Biochem 100:1061-1068

    CAS  PubMed  Google Scholar 

  • Rea R, Hill C, Gahan CG (2005) Listeria monocytogenes PerR mutants display a small-colony phenotype, increased sensitivity to hydrogen peroxide, and significantly reduced murine virulence. Appl Environ Microbiol 71:8314-8322

    CAS  PubMed  Google Scholar 

  • Ren B, Tibbelin G, Kajino T, Asami O, Ladenstein R (2003) The multi-layered structure of Dps with a novel di-nuclear ferroxidase center. J Mol Biol 329:467-477

    CAS  PubMed  Google Scholar 

  • Roy S, Saraswathi R, Gupta S, Sekar K, Chatterji D, Vijayan M (2007) Role of N and C-terminal tails in DNA binding and assembly in Dps: structural studies of Mycobacterium smegmatis Dps deletion mutants. J Mol Biol 370:752-767

    CAS  PubMed  Google Scholar 

  • Roy S, Saraswathi R, Chatterji D, Vijayan M (2008) Structural studies on the second Mycobacterium smegmatis Dps: invariant and variable features of structure, assembly and function. J Mol Biol 375:948-959

    CAS  PubMed  Google Scholar 

  • Saumaa S, Tover A, Tark M, Tegova R, Kivisaar M (2007) Oxidative DNA damage defense systems in avoidance of stationary-phase mutagenesis in Pseudomonas putida. J Bacteriol 189:5504-5514

    CAS  PubMed  Google Scholar 

  • Schnetz K (2008) Fine-tuned growth phase control of dps, encoding a DNA protection protein, by FIS and H-NS. Mol Microbiol 68:1345-1347

    CAS  PubMed  Google Scholar 

  • Setlow B, Hand AR, Setlow P (1991) Synthesis of a Bacillus subtilis small, acid-soluble spore protein in Escherichia coli causes cell DNA to assume some characteristics of spore DNA. J Bacteriol 173:1642-1653

    CAS  PubMed  Google Scholar 

  • Spurio R, Dürrenberger M, Falconi M, La Teana A, Pon CL, Gualerzi CO (1992) Lethal overproduction of the Escherichia coli nucleoid protein H-NS: ultramicroscopic and molecular autopsy. Mol Gen Genet 231:201-211

    CAS  PubMed  Google Scholar 

  • Stefanini S, Cavallo S, Montagnini B, Chiancone E (1999) Incorporation of iron by the unusual dodecameric ferritin from Listeria innocua. Biochem J 338:71-75

    CAS  PubMed  Google Scholar 

  • Stephani K, Weichart D, Hengge R (2003) Dynamic control of Dps protein levels by ClpXP and ClpAP proteases in Escherichia coli. Mol Microbiol 49:1605-1614

    CAS  PubMed  Google Scholar 

  • Stillman TJ, Upadhyay M, Norte VA, Sedelnikova SE, Carradus M, Tzokov S, Bullough PA, Shearman CA, Gasson MJ, Williams CH, Artymiuk PJ, Green J (2005) The crystal structures of Lactococcus lactis MG1363 Dps proteins reveal the presence of an N-terminal helix that is required for DNA binding. Mol Microbiol 57:1101-1112

    CAS  PubMed  Google Scholar 

  • Storz G, Tartaglia LA, Farr SB, Ames BN (1990) Bacterial defenses against oxidative stress. Trends Genet 6:363-368

    CAS  PubMed  Google Scholar 

  • Su M, Cavallo S, Stefanini S, Chiancone E, Chasteen ND (2005) The so-called Listeria innocua ferritin is a Dps protein. Iron incorporation, detoxification, and DNA protection properties. Biochemistry 44:5572-5578

    Google Scholar 

  • Sword CP (1966) Mechanisms of pathogenesis in Listeria monocytogenes infection. Influence of iron. J Bacteriol 92:536-542

    CAS  PubMed  Google Scholar 

  • Tendeng C, Bertin PN (2003) H-NS in Gram-negative bacteria: a family of multifaceted proteins. Trends Microbiol 11:511-518

    CAS  PubMed  Google Scholar 

  • Teneberg S, Miller-Podraza H, Lampert HC, Evans DJ Jr, Evans DG, Danielsson D, Karlsson KA (1997) Carbohydrate binding specificity of the neutrophil-activating protein of Helicobacter pylori. J Biol Chem 272:19067-19071

    CAS  PubMed  Google Scholar 

  • Tikkanen K, Haataja S, François-Gerard C, Finne J (1995) Purification of a galactosyl-alpha 1-4-galactose-binding adhesin from the Gram-positive meningitis-associated bacterium Streptococcus suis. J Biol Chem 270:28874-28878

    CAS  PubMed  Google Scholar 

  • Tonello F, Dundon WG, Satin B, Molinari M, Tognon G, Grandi G, Del Giudice G, Rappuoli R, Montecucco C (1999) The Helicobacter pylori neutrophil-activating protein is an iron-binding protein with dodecameric structure. Mol Microbiol 34:238-246

    CAS  PubMed  Google Scholar 

  • Ueshima J, Shoji M, Ratnayake DB, Abe K, Yoshida S, Yamamoto K, Nakayama K (2003) Purification, gene cloning, gene expression, and mutants of Dps from the obligate anaerobe Porphyromonas gingivalis. Infect Immun 71:1170-1178

    CAS  PubMed  Google Scholar 

  • Valdivia RH, Falkow S (1996) Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol Microbiol 22:367-378

    CAS  PubMed  Google Scholar 

  • van Vliet AH, Baillon ML, Penn CW, Ketley JM (1999) Campylobacter jejuni contains two fur homologs: characterization of iron-responsive regulation of peroxide stress defense genes by the PerR repressor. J Bacteriol 181:6371-6376

    PubMed  Google Scholar 

  • Vazquez-Torres A, Fang FC (2001) Salmonella evasion of the NADPH phagocyte oxidase. Microbes Infect 3:1313-1320

    CAS  PubMed  Google Scholar 

  • Velayudhan J, Castor M, Richardson A, Main-Hestor KL, Fang FC (2007) The role of ferritins in the physiology of Salmonella enterica sv. Typhimurium: a unique role for ferritin B in iron-sulphur cluster repair and virulence. Mol Microbiol 63:1495-1507

    CAS  PubMed  Google Scholar 

  • Wang CA, Liu YC, Du SY, Lin CW, Fu HW (2008) Helicobacter pylori neutrophil-activating protein promotes myeloperoxidase release from human neutrophils. Biochem Biophys Res Commun 377:52-56

    CAS  PubMed  Google Scholar 

  • Wen Y, Marcus EA, Matrubutham U, Gleeson MA, Scott DR, Sachs G (2003) Acid-adaptive genes of Helicobacter pylori. Infect Immun 71:5921-5939

    CAS  PubMed  Google Scholar 

  • Wiedenheft B, Mosolf J, Willits D, Yeager M, Dryden KA, Young M, Douglas T (2005) An archaeal antioxidant: characterization of a Dps-like protein from Sulfolobus solfataricus. Proc Natl Acad Sci USA 102:10551-10556

    CAS  PubMed  Google Scholar 

  • Wolf SG, Frenkiel D, Arad T, Finkel SE, Kolter R, Minsky A (1999) DNA protection by stress-induced biocrystallization. Nature 400:83-85

    CAS  PubMed  Google Scholar 

  • Wooldridge KG, Williams PH (1993) Iron uptake mechanisms of pathogenic bacteria. FEMS Microbiol Rev 12:325-348

    CAS  PubMed  Google Scholar 

  • Yamamoto Y, Higuchi M, Poole LB, Kamio Y (2000) Role of the dpr product in oxygen tolerance in Streptococcus mutans. J Bacteriol 182:3740-3747

    CAS  PubMed  Google Scholar 

  • Yamamoto Y, Poole LB, Hantgan RR, Kamio Y (2002) An iron-binding protein, Dpr, from Streptococcus mutans prevents iron-dependent hydroxyl radical formation in vitro. J Bacteriol 184:2931-2939

    CAS  PubMed  Google Scholar 

  • Yamamoto Y, Fukui K, Koujin N, Ohya H, Kimura K, Kamio Y (2004) Regulation of the intracellular free iron pool by Dpr provides oxygen tolerance to Streptococcus mutans. J Bacteriol 186:5997-6002

    CAS  PubMed  Google Scholar 

  • Yoo AY, Kim SW, Yu JE, Kim YH, Cha J, Oh JI, Eo SK, Lee JH, Kang HY (2007) Requirement of Fur for the full induction of Dps expression in Salmonella enterica serovar Typhimurium. J Microbiol Biotechnol 17:1452-1459

    CAS  PubMed  Google Scholar 

  • Yoshida N, Granger DN, Evans DJ Jr, Evans DG, Graham DY, Anderson DC, Wolf RE, Kvietys PR (1993) Mechanisms involved in Helicobacter pylori-induced inflammation. Gastroenterology 105:1431-1440

    CAS  PubMed  Google Scholar 

  • Zanotti G, Papinutto E, Dundon W, Battistutta R, Seveso M, Giudice G, Rappuoli R, Montecucco C (2002) Structure of the neutrophil-activating protein from Helicobacter pylori. J Mol Biol 323:125-130

    CAS  PubMed  Google Scholar 

  • Zhao G, Ceci P, Ilari A, Giangiacomo L, Laue TM, Chiancone E, Chasteen ND (2002) Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coli. J Biol Chem 277:27689-27696

    CAS  PubMed  Google Scholar 

  • Zheng M, Aslund F, Storz G (1998) Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279:1718-1721

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am deeply grateful to Prof. Abraham Minsky for providing the micrographs displayed in Fig. 9.2 and for the helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanne Ingmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ingmer, H. (2010). Dps and Bacterial Chromatin. In: Dame, R.T., Dorman, C.J. (eds) Bacterial Chromatin. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3473-1_9

Download citation

Publish with us

Policies and ethics