Skip to main content

Polymer Physics for Understanding Bacterial Chromosomes

  • Chapter
Bacterial Chromatin

Abstract

This chapter presents polymer physics that is relevant for an understanding of bacterial chromosome segregation. I first show that polymers have a natural tendency for segregation, which can be very strong in the presence of confinement. I then discuss segregation of duplicating chromosomes using the concentric-shell model, which predicts that newly synthesized DNA will be found in the periphery of the chromosome during replication. I sketch implications of these results, e.g., on the role of proteins, segregation mechanisms for bacteria of diverse shapes, cell cycle of an artificial cell, and evolution. Finally, I remind the reader of the robust nature of the bacterial cell cycle by presenting experimental results of Escherichia coli growing in a nano-fabricated slab of thickness under 300 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

     For a physical approach to eukaryotic chromosomes, the reader is encouraged to read Marko and Siggia (1997).

  2. 2.

     Note that polymer physics was still in its infancy during Schrödinger’s time. For instance, Flory’s magnum opus, Principles of Polymer Chemistry (1953), appeared almost 10 years after What is Life? (1944).

  3. 3.

     There is an ongoing debate about how long the duplicated ori and other loci stay together before splitting during chromosome segregation (“cohesion”). See, for example, Bates and Kleckner (2005), Nanninga et al. (2002), Nielsen et al. (2006), Sunako et al. (2001).

  4. 4.

     In our previous study (Jun and Mulder 2006), this gap was even smaller than the width of the chain in our simulations.

  5. 5.

     The origin of this result is due to the form of the free energy in Eq. 6.3 (Grosberg et al. 1982; Jun et al. 2007; Sakaue and Raphaël 2006), which has been constructed to be a function of only the monomer density. In other words, regardless of the shape of the envelope surrounding the chains, the free energies will be the same as long as the volumes are also the same, and vice versa. Additional consideration of the interactions at the surface will change the envelope shape, but not segregation/mixing.

References

  • Alder BJ, Wainwright TE (1957) Phase transition for a hard sphere system. J Chem Phys 27:1208-1209

    Article  CAS  Google Scholar 

  • Arnold A, Jun S (2007) Timescale of entropic segregation of flexible polymers in confinement: implications for chromosome segregation in filamentous bacteria. Phys Rev E 76:031901

    Article  Google Scholar 

  • Barre FX (2007) FtsK and SpoIIIE: the tale of the conserved tails. Mol Microbiol 66:1051-1055

    Article  CAS  PubMed  Google Scholar 

  • Bates D, Kleckner N (2005) Chromosome and replisome dynamics in E. coli: loss of sister cohesion triggers global chromosome movement and mediates chromosome segregation. Cell 121:899-911

    Article  CAS  PubMed  Google Scholar 

  • Berkmen MB, Grossman AD (2006) Spatial and temporal organization of the Bacillus subtilis replication cycle. Mol Microbiol 62:57-71

    Article  CAS  PubMed  Google Scholar 

  • Berlatzky IA, Rouvinski A, Ben-Yehuda S (2008) Spatial organization of a replicating bacterial chromosome. Proc Natl Acad Sci USA 105:14136-14140

    Article  CAS  PubMed  Google Scholar 

  • Breier AM, Cozzarelli NR (2004) Linear ordering and dynamic segregation of the bacterial chromosome. Proc Natl Acad Sci USA 101:9175-9176

    Article  CAS  PubMed  Google Scholar 

  • Cacciuto A, Luijten E (2006) Self-avoiding flexible polymers under spherical confinement. Nano Lett 6:901-905

    Article  CAS  PubMed  Google Scholar 

  • Cates ME, Deutsch JM (1986) Conjectures on the statistics of ring polymers. J Physique 47:2121-2128

    Article  CAS  Google Scholar 

  • Chen I (2009) Cell division: breaking up is easy to do. Curr Biol 19(8):R327-R328

    Article  CAS  Google Scholar 

  • Corbin BD, Yu XC, Margolin W (2002) Exploring intracellular space: function of the Min system in round-shaped Escherichia coli. EMBO J 21:1998-2008

    Article  CAS  PubMed  Google Scholar 

  • Danchin A, Guerdoux-Jamet P, Moszer I, Nitschké P (2000) Mapping the bacterial cell architecture into the chromosome. Phil Trans Roy Soc Lond B 355:179-190

    Article  CAS  Google Scholar 

  • Danilova O, Reyes-Lamothe R, Pinskaya M, Sherratt D, Possoz C (2007) MukB colocalizes with the oriC region and is required for organization of the two Escherichia coli chromosome arms into separate cell halves. Mol Microbiol 65:1485-1492

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta S, Maisnier-Patin S, Nordström K (2000) New genes with old modus operandi: the connection between supercoiling and partitioning of DNA in Escherichia coli. EMBO Reports 1:323-327

    Article  CAS  PubMed  Google Scholar 

  • Dworkin J, Losick R (2002) Does RNA polymerase help drive chromosome segregation in bacteria? Proc Natl Acad Sci USA 99:14089-14094

    Article  CAS  PubMed  Google Scholar 

  • Elmore S, Müller M, Vischer N, Odijk T, Woldringh CL (2005) Single-particle tracking of oriC-GFP fluorescent spots during chromosome segregation in Escherichia coli. J Struct Biol 151:275-287

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Tuncay K, Ortoleva PJ (2007) Chromosome segregation in Escherichia coli division: a free energy-driven string model. Comp Biol Chem 31:257-264

    Article  CAS  Google Scholar 

  • Fiebig A, Keren K, Theriot JA (2006) Fine-scale time-lapse analysis of the biphasic, dynamic behaviour of the two Vibrio cholerae chromosomes. Mol Microbiol 60:1164-1178

    Article  CAS  PubMed  Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, NY, USA

    Google Scholar 

  • Flory PJ, Krigbaum WR (1950) Statistical mechanics of dilute polymer solutions II. J Chem Phys 18:1086-1094

    Article  CAS  Google Scholar 

  • Fogel MA, Waldor MK (2006) A dynamic, mitotic-like mechanism for bacterial chromosome segregation. Genes Dev 20:3269-3282

    Article  CAS  PubMed  Google Scholar 

  • Grosberg AY, Khalatur PG, Khokhlov AR (1982) Polymeric coils with excluded volume in dilute solution: the invalidity of the model of impenetrable spheres and the influence of excluded volume on the rates of diffusion-controlled intermacromolecular reactions. Die Makromol Chem, Rapid Commun 3:709-713

    Article  CAS  Google Scholar 

  • Grosberg AY, Khokhlov AR (1994) Statistical physics of macromolecules. AIP, New York, NY, USA

    Google Scholar 

  • Holmes VF, Cozzarelli NR (2000) Closing the ring: links between SMC proteins and chromosome partitioning, condensation, and supercoiling. Proc Natl Acad Sci USA 97:1322-1324

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Yang G, Zhao W, Zhang Y, Zhao J (2007) MreB is important for cell shape but not for chromosome segregation of the filamentous cyanobacterium Anabaena sp. PCC 7120. Mol Microbiol 63:1640-1652

    Article  CAS  PubMed  Google Scholar 

  • Huang KC, Wingreen NS (2004) Min-protein oscillations in round bacteria. Phys Biol 1:229-235

    Article  CAS  PubMed  Google Scholar 

  • Jacob F, Brenner S, Cuzin F (1963) On the regulation of DNA R replication in bacteria. J Mol Biol 28:329-348

    CAS  Google Scholar 

  • Jun S, Arnold A, Ha B-Y (2007) Confined space and effective interactions of multiple self-avoiding chains. Phys Rev Lett 98:128303

    Article  PubMed  Google Scholar 

  • Jun S, Mulder B (2006) Entropy-driven spatial organization of highly confined polymers: lessons for the bacterial chromosome. Proc Natl Acad Sci USA 103:12388-12393

    Article  CAS  PubMed  Google Scholar 

  • Kleckner N, Zickler D, Jones GH, Dekker J, Padmore R, Henle J, Hutchinson J (2004) A mechanical basis for chromosome function. Proc Natl Acad Sci USA 101:12592-12597

    Article  CAS  PubMed  Google Scholar 

  • Komaki K, Ishikawa H (1999) Intracellular bacterial symbionts of aphids possess many genomic copies per bacterium. J Mol Evol 48:717-722

    Article  CAS  PubMed  Google Scholar 

  • Lemon KP, Grossman AD (2001) The extrusion-capture model for chromosome partitioning in bacteria. Genes Dev 15:2031-2041

    Article  CAS  PubMed  Google Scholar 

  • Levy SL, Mannion JT, Cheng J, Reccius C, Craighead HG (2009) Entropic unfolding of DNA molecules in nanofluidic channels. Nano Lett 8:3839-3844

    Article  Google Scholar 

  • Madabhushi R, Marians KJ (2009) Actin homolog MreB affects chromosome segregation by regulating topoisomerase IV in Escherichia coli. Mol Cell 33:171-180

    Article  CAS  PubMed  Google Scholar 

  • Marenduzzo D, Micheletti C, Cook PR (2006) Entropy-driven genome organization. Biophys J 90:3712-3721

    Article  CAS  PubMed  Google Scholar 

  • Marko JF, Siggia ED (1997) Polymer models of meiotic and mitotic chromosomes. Mol Biol Cell 8:2217-2231

    CAS  PubMed  Google Scholar 

  • Nanninga N, Roos M, Woldringh CL (2002) Models on stickiness of replicated Escherichia coli oriC. Microbiology 148:3327-3328

    CAS  PubMed  Google Scholar 

  • Nielsen HJ, Ottesen JR, Youngren B, Austin SJ, Hansen FG (2006) The Escherichia coli chromosome is organized with the left and right chromosome arms in separate cell halves. Mol Microbiol 62:331-338

    Article  CAS  PubMed  Google Scholar 

  • Odijk T (2006) DNA conned in nanochannels: Hairpin tightening by entropic depletion. J Chem Phys 125:204904

    Google Scholar 

  • Onsager L (1949) The effect of shape on the interaction of colloidal particles. Ann NY Acad Sci 51:627-659

    Article  CAS  Google Scholar 

  • Sakaue T, Raphaël (2006) Polymer chains in confined spaces and flow-injection problems: some remarks. Macromolecules 39:2621-2628

    Google Scholar 

  • Sawitzke JA, Austin S (2000) Suppression of chromosome segregation defects of Escherichia coli muk mutants by mutations in topoisomerase I. Proc Natl Acad Sci USA 97:1671-1676

    Article  CAS  PubMed  Google Scholar 

  • Schrödinger (1944) What is life? Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Stavans J, Oppenheim A (2006) DNA - protein interactions and bacterial chromosome architecture. Phys Biol 3:R1-R10

    Article  CAS  PubMed  Google Scholar 

  • Sunako Y, Onogi T, Hiraga S (2001) Sister chromosome cohesion of Escherichia coli. Mol Microbiol 42:1233-1241

    Article  CAS  PubMed  Google Scholar 

  • Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409:387-390

    Article  CAS  PubMed  Google Scholar 

  • Teleman AA, Graumann PL, Lin DC-H, Grossman AD, Losick R (1998) Chromosome arrangement within a bacterium. Curr Biol 8:1102-1109

    Article  CAS  PubMed  Google Scholar 

  • Toro E, Hong S-H, McAdams HH, Shapiro L (2008) Caulobacter requires a dedicated mechanism to initiate chromosome segregation. Proc Natl Acad Sci USA 105:15435-15440

    Article  CAS  PubMed  Google Scholar 

  • Trun NJ, Marko JF (1998) Architecture of a bacterial chromosome. ASM News 64:276-283

    Google Scholar 

  • Vilgis TA (2000) Polymer theory: path integrals and scaling. Phys Rep 336:167-254

    Article  CAS  Google Scholar 

  • Viollier PH, Thanbichler M, McGrath PT, West L, Meewan M, McAdams HH, Shapiro L (2004) Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc Natl Acad Sci USA 101:9257-9262

    Article  CAS  PubMed  Google Scholar 

  • Walsby AE (2000) A square bacterium. Nature 283:69-71

    Article  Google Scholar 

  • Wang X, Liu X, Possoz C, Sherratt DJ (2006) The two Escherichia coli chromosome arms locate to separate cell halves. Genes Dev 20:1727-1731

    Article  CAS  PubMed  Google Scholar 

  • Weart RB, Lee AH, Chien A-C, Haeusser DP, Hill NS, Levin PA (2007) A metabolic sensor governing cell size in bacteria. Cell 130:335-347

    Article  CAS  PubMed  Google Scholar 

  • Woldringh CL (2002) The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation. Mol Microbiol 45:17-29

    Article  CAS  PubMed  Google Scholar 

  • Woldringh CL, Odijk T (1999) In: Charlebois (ed) Organization of the prokaryotic genome. ASM, Washington DC, USA, pp 161-197

    Google Scholar 

  • Wood WW, Jacobson JD (1957) Preliminary results from a recalculation of the Monte Carlo equation of state of hard spheres. J Chem Phys 27:1207-1208

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I thank A. Arnold, B.-Y. Ha and B. Mulder for many of the collaborative results presented in this book chapter, and W. Dang and P. Galajda for their work mentioned in Fig. 6.10 during their stay in my lab. I am particularly grateful to C. Woldringh for numerous discussions, inspiring conversations and long-term collaborations.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Jun, S. (2010). Polymer Physics for Understanding Bacterial Chromosomes. In: Dame, R.T., Dorman, C.J. (eds) Bacterial Chromatin. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3473-1_6

Download citation

Publish with us

Policies and ethics