Skip to main content

Role of HU in Regulation of gal Promoters

  • Chapter
Bacterial Chromatin

Abstract

HU is one of the histone-like DNA binding proteins, which are involved in maintaining the nucleoid structure in bacteria. HU has also been shown to ­participate in transcriptional regulation of specific promoters. In this chapter, we provide an overview of the mechanism of HU action in the transcriptional ­regulation of the two promoters of the gal operon in E. coli by providing results of genetic, biophysical and biochemical experiments both in vivo and in vitro.

The online version of the Erratum chapter can be found at 10.1007/978-90-481-3473-1_19

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhya S, Echols H (1966) Glucose effect and the galactose enzymes of Escherichia coli: correlation between glucose inhibition of induction and inducer transport. J Bacteriol 92:601-608

    CAS  PubMed  Google Scholar 

  • Adhya S, Miller W (1979) Modulation of the two promoters of the galactose operon of Escherichia coli. Nature 279:492-494

    Article  CAS  PubMed  Google Scholar 

  • Adhya S, Geanacopoulos M, Lewis DE, Roy S, Aki T (1998) Transcription regulation by repressosome and by RNA polymerase contact. Cold Spring Harb Symp Quant Biol 63:1-9

    Article  CAS  PubMed  Google Scholar 

  • Aki T, Adhya S (1997) Repressor induced site-specific binding of HU for transcriptional regulation. EMBO J 16:3666-3674

    Article  CAS  PubMed  Google Scholar 

  • Aki T, Choy HE, Adhya S (1996) Histone-like protein HU as a specific transcriptional regulator: co-factor role in repression of gal transcription by GAL repressor. Genes Cells 1:179-188

    Article  CAS  PubMed  Google Scholar 

  • Alberti S, Oehler S, von Wilcken-Bergmann B, Kramer H, Muller-Hill B (1991) Dimer-to-tetramer assembly of Lac repressor involves a leucine heptad repeat. New Biol 3:57-62

    CAS  PubMed  Google Scholar 

  • Alberti S, Oehler S, von Wilcken-Bergmann B, Muller-Hill B (1993) Genetic analysis of the leucine heptad repeats of Lac repressor: evidence for a 4-helical bundle. EMBO J 12:3227-3236

    CAS  PubMed  Google Scholar 

  • Bonnefoy E, Rouvière-Yaniv J (1991) HU and IHF, two homologous histone-like proteins of Escherichia coli, form different protein-DNA complexes with short DNA fragments. EMBO J 10:687-696

    CAS  PubMed  Google Scholar 

  • Bonnefoy E, Takahashi M, Yaniv JR (1994) DNA-binding parameters of the HU protein of Escherichia coli to cruciform DNA. J Mol Biol 242:116-129

    Article  CAS  PubMed  Google Scholar 

  • Borowiec JA, Zhang L, Sasse-Dwight S, Gralla JD (1987) DNA supercoiling promotes formation of a bent repression loop in lac DNA. J Mol Biol 196:101-111

    Article  CAS  PubMed  Google Scholar 

  • Bouffard GG, Rudd KE, Adhya SL (1994) Dependence of lactose metabolism upon mutarotase encoded in the gal operon in Escherichia coli. J Mol Biol 244:269-278

    Article  CAS  PubMed  Google Scholar 

  • Brenowitz M, Jamison E, Majumdar A, Adhya S (1990) Interaction of the Escherichia coli Gal repressor protein with its DNA operators in vitro. Biochemistry 29:3374-3383

    Article  CAS  PubMed  Google Scholar 

  • Brenowitz M, Mandal N, Pickar A, Jamison E, Adhya S (1991) DNA-binding properties of a lac repressor mutant incapable of forming tetramers. J Biol Chem 266:1281-1288

    CAS  PubMed  Google Scholar 

  • Buttin G (1963) Regulatory mechanisms in the biosynthesis of the enzymes of galactose metabolism in Escherichia coli K 12. Ii. the genetic determinism of the regulation. J Mol Biol 7:183-205

    Article  CAS  PubMed  Google Scholar 

  • Castaing B, Zelwer C, Laval J, Boiteux S (1995) HU protein of Escherichia coli binds specifically to DNA that contains single-strand breaks or gaps. J Biol Chem 270:10291-10296

    Article  CAS  PubMed  Google Scholar 

  • Charlier M, Maurizot JC, Zaccai G (1980) Neutron scattering studies of lac repressor. Nature 286:423-425

    Article  CAS  PubMed  Google Scholar 

  • Charvin G, Allemand JF, Strick TR, Bensimon D, Croquette V (2004) Twisting DNA: single molecule studies. Contemp Phys 45:383-403

    Article  CAS  Google Scholar 

  • Choy HE, Adhya S (1992) Control of gal transcription through DNA looping: inhibition of the initial transcribing complex. Proc Natl Acad Sci USA 89:11264-11268

    Article  CAS  PubMed  Google Scholar 

  • Choy HE, Park SW, Aki T, Parrack P, Fujita N, Ishihama A, Adhya S (1995a) Repression and activation of transcription by Gal and Lac repressors: involvement of alpha subunit of RNA polymerase. EMBO J 14:4523-4529

    CAS  PubMed  Google Scholar 

  • Choy HE, Park SW, Parrack P, Adhya S (1995b) Transcription regulation by inflexibility of promoter DNA in a looped complex. Proc Natl Acad Sci USA 92:7327-7331

    Article  CAS  PubMed  Google Scholar 

  • Choy HE, Hanger RR, Aki T, Mahoney M, Murakami K, Ishihama A, Adhya S (1997) Repression and activation of promoter-bound RNA polymerase activity by Gal repressor. J Mol Biol 272:293-300

    Article  CAS  PubMed  Google Scholar 

  • Craigie R, Mizuuchi K (1985) Mechanism of transposition of bacteriophage Mu: structure of a transposition intermediate. Cell 41:867-876

    Article  CAS  PubMed  Google Scholar 

  • Dandanell G, Hammer K (1985) Two operator sites separated by 599 base pairs are required for deoR repression of the deo operon of Escherichia coli. EMBO J 4:3333-3338

    CAS  PubMed  Google Scholar 

  • Dickerson RE (1998) DNA bending: the prevalence of kinkiness and the virtues of normality. Nucleic Acids Res 26:1906-1926

    Article  CAS  PubMed  Google Scholar 

  • Drlica K (1987) The nucleoid. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, DC, pp 91-103

    Google Scholar 

  • Drlica K, Rouvière-Yaniv J (1987) Histonelike proteins of bacteria. Microbiol Rev 51:301-319

    CAS  PubMed  Google Scholar 

  • Dunn TM, Schleif R (1984) Deletion analysis of the Escherichia coli ara PC and PBAD promoters. J Mol Biol 180:201-204

    Article  CAS  PubMed  Google Scholar 

  • Echols H, Reznichek J, Adhya S (1963) Complementation, recombination, and suppression in galactose negative mutants of E. coli. Proc Natl Acad Sci USA 50:286-293

    Article  CAS  PubMed  Google Scholar 

  • Friedman AM, Fischmann TO, Steitz TA (1995) Crystal structure of lac repressor core tetramer and its implications for DNA looping. Science 268:1721-1727

    Article  CAS  PubMed  Google Scholar 

  • Geanacopoulos M, Vasmatzis G, Lewis DE, Roy S, Lee B, Adhya S (1999) GalR mutants defective in repressosome formation. Genes Dev 13:1251-1262

    Article  CAS  PubMed  Google Scholar 

  • Geanacopoulos M, Vasmatzis G, Zhurkin VB, Adhya S (2001) Gal repressosome contains an antiparallel DNA loop. Nat Struct Biol 8:432-436

    Article  CAS  PubMed  Google Scholar 

  • Griffith J, Hochschild A, Ptashne M (1986) DNA loops induced by cooperative binding of lambda repressor. Nature 322:750-752

    Article  CAS  PubMed  Google Scholar 

  • Grove A, Galeone A, Mayol L, Geiduschek EP (1996) Localized DNA flexibility contributes to target site selection by DNA-bending proteins. J Mol Biol 260:120-125

    Article  CAS  PubMed  Google Scholar 

  • Haber R, Adhya S (1988) Interaction of spatially separated protein-DNA complexes for control of gene expression: operator conversions. Proc Natl Acad Sci USA 85:9683-9687

    Article  CAS  PubMed  Google Scholar 

  • Hahn S, Hendrickson W, Schleif R (1986) Transcription of Escherichia coli ara in vitro. The cyclic AMP receptor protein requirement for PBAD induction that depends on the presence and orientation of the araO2 site. J Mol Biol 188:355-367

    Article  CAS  PubMed  Google Scholar 

  • Hochschild A, Ptashne M (1986) Homologous interactions of lambda repressor and lambda Cro with the lambda operator. Cell 44:925-933

    Article  CAS  PubMed  Google Scholar 

  • Irani MH, Orosz L, Adhya S (1983) A control element within a structural gene: the gal operon of Escherichia coli. Cell 32:783-788

    Article  CAS  PubMed  Google Scholar 

  • Kabsch W, Sander C, Trifonov EN (1982) The ten helical twist angles of B-DNA. Nucleic Acids Res 10:1097-1104

    Article  CAS  PubMed  Google Scholar 

  • Kano Y, Wada M, Nagase T, Imamoto F (1986) Genetic characterization of the gene hupB encoding the HU-1 protein of Escherichia coli. Gene 45:37-44

    Article  CAS  PubMed  Google Scholar 

  • Kano Y, Osato K, Wada M, Imamoto F (1987) Cloning and sequencing of the HU-2 gene of Escherichia coli. Mol Gen Genet 209:408-410

    Article  CAS  PubMed  Google Scholar 

  • Kar S, Adhya S (2001) Recruitment of HU by piggyback: a special role of GalR in repressosome assembly. Genes Dev 15:2273-2281

    Article  CAS  PubMed  Google Scholar 

  • Kobryn K, Lavoie BD, Chaconas G (1999) Supercoiling-dependent site-specific binding of HU to naked Mu DNA. J Mol Biol 289:777-784

    Article  CAS  PubMed  Google Scholar 

  • Kramer H, Niemoller M, Amouyal M, Revet B, von Wilcken-Bergmann B, Muller-Hill B (1987) lac repressor forms loops with linear DNA carrying two suitably spaced lac operators. EMBO J 6:1481-1491

    CAS  PubMed  Google Scholar 

  • Kramer H, Amouyal M, Nordheim A, Muller-Hill B (1988) DNA supercoiling changes the spacing requirement of two lac operators for DNA loop formation with lac repressor. EMBO J 7:547-556

    CAS  PubMed  Google Scholar 

  • Kuhnke G, Krause A, Heibach C, Gieske U, Fritz HJ, Ehring R (1986) The upstream operator of the Escherichia coli galactose operon is sufficient for repression of transcription initiated at the cyclic AMP-stimulated promoter. EMBO J 5:167-173

    CAS  PubMed  Google Scholar 

  • Lavoie BD, Chaconas G (1993) Site-specific HU binding in the Mu transpososome: conversion of a sequence-independent DNA-binding protein into a chemical nuclease. Genes Dev 7:2510-2519

    Article  CAS  PubMed  Google Scholar 

  • Lavoie BD, Shaw GS, Millner A, Chaconas G (1996) Anatomy of a flexer-DNA complex inside a higher-order transposition intermediate. Cell 85:761-771

    Article  CAS  PubMed  Google Scholar 

  • Law SM, Bellomy GR, Schlax PJ, Record MT Jr (1993) In vivo thermodynamic analysis of repression with and without looping in lac constructs. Estimates of free and local lac repressor concentrations and of physical properties of a region of supercoiled plasmid DNA in vivo. J Mol Biol 230:161-173

    Article  CAS  PubMed  Google Scholar 

  • Lee DH, Schleif RF (1989) In vivo DNA loops in araCBAD: size limits and helical repeat. Proc Natl Acad Sci USA 86:476-480

    Article  CAS  PubMed  Google Scholar 

  • Lewis DE (2003) Identification of promoters of Escherichia coli and phage in transcription section plasmid pSA850. Methods Enzymol 370:618-645

    Article  CAS  PubMed  Google Scholar 

  • Lewis DE, Adhya S (2002) In vitro repression of the gal promoters by GalR and HU depends on the proper helical phasing of the two operators. J Biol Chem 277:2498-2504

    Article  CAS  PubMed  Google Scholar 

  • Lewis M, Chang G, Horton NC, Kercher MA, Pace HC, Schumacher MA, Brennan RG, Lu P (1996) Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science 271:1247-1254

    Article  CAS  PubMed  Google Scholar 

  • Lewis DE, Geanacopoulos M, Adhya S (1999) Role of HU and DNA supercoiling in transcription repression: specialized nucleoprotein repression complex at gal promoters in Escherichia coli. Mol Microbiol 31:451-461

    Article  CAS  PubMed  Google Scholar 

  • Lia G, Bensimon D, Croquette V, Allemand JF, Dunlap D, Lewis DE, Adhya S, Finzi L (2003) Supercoiling and denaturation in Gal repressor/heat unstable nucleoid protein (HU)-mediated DNA looping. Proc Natl Acad Sci USA 100:11373-11377

    Article  CAS  PubMed  Google Scholar 

  • Lia G, Semsey S, Lewis DE, Adhya S, Bensimon D, Dunlap D, Finzi L (2008) The antiparallel loops in gal DNA. Nucleic Acids Res 36:4204-4210

    Article  CAS  PubMed  Google Scholar 

  • Lobell RB, Schleif RF (1990) DNA looping and unlooping by AraC protein. Science 250:528-532

    Article  CAS  PubMed  Google Scholar 

  • Majumdar A, Adhya S (1984) Demonstration of two operator elements in gal: in vitro repressor binding studies. Proc Natl Acad Sci USA 81:6100-6104

    Article  CAS  PubMed  Google Scholar 

  • Majumdar A, Adhya S (1987) Probing the structure of gal operator-repressor complexes. Conformation change in DNA. J Biol Chem 262:13258-13262

    CAS  PubMed  Google Scholar 

  • Majumdar A, Rudikoff S, Adhya S (1987) Purification and properties of Gal repressor:pL-galR fusion in pKC31 plasmid vector. J Biol Chem 262:2326-2331

    CAS  PubMed  Google Scholar 

  • Mandal N, Su W, Haber R, Adhya S, Echols H (1990) DNA looping in cellular repression of transcription of the galactose operon. Genes Dev 4:410-418

    Article  CAS  PubMed  Google Scholar 

  • Mossing MC, Record MT Jr (1986) Upstream operators enhance repression of the lac promoter. Science 233:889-892

    Article  CAS  PubMed  Google Scholar 

  • Muller J, Oehler S, Muller-Hill B (1996) Repression of lac promoter as a function of distance, phase and quality of an auxiliary lac operator. J Mol Biol 257:21-29

    Article  CAS  PubMed  Google Scholar 

  • Muller J, Barker A, Oehler S, Muller-Hill B (1998) Dimeric lac repressors exhibit phase-dependent co-operativity. J Mol Biol 284:851-857

    Article  CAS  PubMed  Google Scholar 

  • Murphy LD, Zimmerman SB (2000) Multiple restraints to the unfolding of spermidine nucleoids from Escherichia coli. J Struct Biol 132:46-62

    Article  CAS  PubMed  Google Scholar 

  • Musso RE, Di Lauro R, Adhya S, de Crombrugghe B (1977) Dual control for transcription of the galactose operon by cyclic AMP and its receptor protein at two interspersed promoters. Cell 12:847-854

    Article  CAS  PubMed  Google Scholar 

  • Oberto J, Drlica K, Rouvière-Yaniv J (1994) Histones, HMG, HU, IHF: meme combat. Biochimie 76:901-908

    Article  CAS  PubMed  Google Scholar 

  • Oehler S, Eismann ER, Kramer H, Muller-Hill B (1990) The three operators of the lac operon cooperate in repression. EMBO J 9:973-979

    CAS  PubMed  Google Scholar 

  • Pennington MR (2006) Sigma coupling to photons: hidden scalar in gammagamma -> pi0pi0. Phys Rev Lett 97:011601

    Article  CAS  PubMed  Google Scholar 

  • Perez N, Rehault M, Amouyal M (2000) A functional assay in Escherichia coli to detect non-assisted interaction between galactose repressor dimers. Nucleic Acids Res 28:3600-3604

    Article  CAS  PubMed  Google Scholar 

  • Pettijohn DE (1988) Histone-like proteins and bacterial chromosome structure. J Biol Chem 263:12793-12796

    CAS  PubMed  Google Scholar 

  • Pettijohn DE (1996) The nucleoid. In: Curtis R, Ingraham JL, Lin ECC, Low KB, Magasanik B, and Reznikoff WS et al. (eds) Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd edn. American Society for Microbiology, Washington, DC, pp 158-166

    Google Scholar 

  • Pontiggia A, Negri A, Beltrame M, Bianchi ME (1993) Protein HU binds specifically to kinked DNA. Mol Microbiol 7:343-350

    Article  CAS  PubMed  Google Scholar 

  • Ptashne M (1986) Gene regulation by proteins acting nearby and at a distance. Nature 322:697-701

    Article  CAS  PubMed  Google Scholar 

  • Reitzer LJ, Magasanik B (1986) Transcription of glnA in E. coli is stimulated by activator bound to sites far from the promoter. Cell 45:785-792

    Article  CAS  PubMed  Google Scholar 

  • Rhodes D, Klug A (1980) Helical periodicity of DNA determined by enzyme digestion. Nature 286:573-578

    Article  CAS  PubMed  Google Scholar 

  • Rice PA, Yang S, Mizuuchi K, Nash HA (1996) Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell 87:1295-1306

    Article  CAS  PubMed  Google Scholar 

  • Rouvière-Yaniv J (1978) Localization of the HU protein on the Escherichia coli nucleoid. Cold Spring Harb Symp Quant Biol 42(Pt 1):439-447

    CAS  PubMed  Google Scholar 

  • Rouvière-Yaniv J, Gros F (1975) Characterization of a novel, low-molecular-weight DNA-binding protein from Escherichia coli. Proc Natl Acad Sci USA 72:3428-3432

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Semsey S, Liu M, Gussin GN, Adhya S (2004) GalR represses galP1 by inhibiting the rate-determining open complex formation through RNA polymerase contact: a GalR negative control mutant. J Mol Biol 344:609-618

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Dimitriadis EK, Kar S, Geanacopoulos M, Lewis MS, Adhya S (2005) Gal repressor-operator-HU ternary complex: pathway of repressosome formation. Biochemistry 44:5373-5380

    Article  CAS  PubMed  Google Scholar 

  • Schleif R (1987) Gene regulation: why should DNA loop? Nature 327:369-370

    Article  CAS  PubMed  Google Scholar 

  • Schumacher MA, Choi KY, Zalkin H, Brennan RG (1994) Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by alpha helices. Science 266:763-770

    Article  CAS  PubMed  Google Scholar 

  • Semsey S, Geanacopoulos M, Lewis DE, Adhya S (2002) Operator-bound GalR dimers close DNA loops by direct interaction: tetramerization and inducer binding. EMBO J 21:4349-4356

    Article  CAS  PubMed  Google Scholar 

  • Semsey S, Tolstorukov MY, Virnik K, Zhurkin VB, Adhya S (2004) DNA trajectory in the Gal repressosome. Genes Dev 18:1898-1907

    Article  CAS  PubMed  Google Scholar 

  • Shapiro JA, Adhya SL (1969) The galactose operon of E. coli K-12. II. A deletion analysis of operon structure and polarity. Genetics 62:249-264

    CAS  PubMed  Google Scholar 

  • Shore D, Baldwin RL (1983) Energetics of DNA twisting I. Relation between twist and cyclization probability. J Mol Biol 170:957-981

    Article  CAS  PubMed  Google Scholar 

  • Surette MG, Buch SJ, Chaconas G (1987) Transpososomes: stable protein-DNA complexes involved in the in vitro transposition of bacteriophage Mu DNA. Cell 49:253-262

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Goshima N, Kohno K, Kano Y, Imamoto F (1993) Properties of DNA-binding of HU heterotypic and homotypic dimers from Escherichia coli. J Biochem 113:568-572

    CAS  PubMed  Google Scholar 

  • Tullius TD, Dombroski BA (1985) Iron(II) EDTA used to measure the helical twist along any DNA molecule. Science 230:679-681

    Article  CAS  PubMed  Google Scholar 

  • Virnik K, Lyubchenko YL, Karymov MA, Dahlgren P, Tolstorukov MY, Semsey S, Zhurkin VB, Adhya S (2003) “Antiparallel” DNA loop in gal repressosome visualized by atomic force microscopy. J Mol Biol 334:53-63

    Article  CAS  PubMed  Google Scholar 

  • von Wilcken-Bergmann B, Muller-Hill B (1982) Sequence of galR gene indicates a common evolutionary origin of lac and gal repressor in Escherichia coli. Proc Natl Acad Sci USA 79:2427-2431

    Article  Google Scholar 

  • Wang JC (1979) Helical repeat of DNA in solution. Proc Natl Acad Sci USA 76:200-203

    Article  CAS  PubMed  Google Scholar 

  • Wang JC, Giaever GN (1988) Action at a distance along a DNA. Science 240:300-304

    Article  CAS  PubMed  Google Scholar 

  • Wang MD, Schnitzer MJ, Yin H, Landick R, Gelles J, Block SM (1998) Force and velocity measured for single molecules of RNA polymerase. Science 282:902-907

    Article  CAS  PubMed  Google Scholar 

  • Weickert MJ, Adhya S (1992) A family of bacterial regulators homologous to Gal and Lac repressors. J Biol Chem 267:15869-15874

    CAS  PubMed  Google Scholar 

  • Yang B, Larson TJ (1996) Action at a distance for negative control of transcription of the glpD gene encoding sn-glycerol 3-phosphate dehydrogenase of Escherichia coli K-12. J Bacteriol 178:7090-7098

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Much of the work described in this chapter is from the authors’ laboratory. We gratefully acknowledge the contributions of many of our past and present colleagues and collaborators too numerous to list. We are supported by the Intramural Research Program of the National Institutes of Health, the National Cancer Institute, the Center for Cancer Research. We thank Dr. Dhruba Chattoraj for suggestions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankar Adhya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lewis, D.E.A., Lee, S.J., Adhya, S. (2010). Role of HU in Regulation of gal Promoters. In: Dame, R.T., Dorman, C.J. (eds) Bacterial Chromatin. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3473-1_17

Download citation

Publish with us

Policies and ethics