Skip to main content

Coming Full Circle: Cyclin-Dependent Kinases as Anti-cancer Drug Targets

  • Chapter
  • First Online:
Genome Stability and Human Diseases

Part of the book series: Subcellular Biochemistry ((SCBI,volume 50))

Abstract

Because the normal control of cell proliferation is disturbed in cancer, the cyclin-dependent kinases (CDKs) that trigger DNA synthesis and mitosis have been popular targets for inhibition with small molecules, but the jury is still out on whether this will be an effective anti-tumor strategy. There is debate about which of the multiple CDKs active during the mammalian cell cycle might be good targets, reflecting fundamental confusion about what, precisely, those different CDKs really do. In the classical view, based largely on their activation timing in cycling cells, different CDKs are specialized to perform discrete functions during distinct cell-cycle intervals. A revisionist model has emerged in which all functions essential to cell division can be performed by a single catalytic subunit, based on the ability of cells to proliferate and animals to survive when individual CDKs are removed by gene deletion or depleted by RNA interference. That those situations in no way resemble ones in which CDKs are inhibited pharmacologically is often overlooked or downplayed. A more nuanced – and accurate – picture is now coming into view, thanks to recent studies that reveal kinetically distinct pathways of activation for closely related CDKs and CDK-specific roles in the temporal control of S phase. The basic question of whether CDKs can be effectively targeted in cancer has yet to be answered but can now be addressed in chemical-genetic model systems that approximate the situation – still hypothetical – of truly selective CDK inhibition in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 219.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 219.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AS:

analog-sensitive

APC:

anaphase-promoting complex

CAK:

CDK-activating kinase

CDK:

cyclin-dependent kinase

DN:

dominant negative

MEF:

mouse embryonic fibroblast

Plk1:

Polo-like kinase 1

P-TEFb:

positive transcription elongation factor b

rAAV:

recombinant adeno-associated virus

Rb:

retinoblastoma protein

RNAi:

RNA interference

Pol II:

RNA Polymerase II

TFIIH:

transcription factor IIH

References

  • Aleem, E., Kiyokawa, H., and Kaldis, P. (2005) Cdc2-cyclin E complexes regulate the G1/S phase transition. Nat Cell Biol, 7, 831–836.

    Article  CAS  PubMed  Google Scholar 

  • Arooz, T., Yam, C. H., Siu, W. Y., Lau, A., Li, K. K., and Poon, R. Y. (2000) On the concentrations of cyclins and cyclin-dependent kinases in extracts of cultured human cells. Biochemistry, 39, 9494–9501.

    Article  CAS  PubMed  Google Scholar 

  • Bashir, T. and Pagano, M. (2005) Cdk1: the dominant sibling of Cdk2. Nat Cell Biol, 7, 779–781.

    Article  CAS  PubMed  Google Scholar 

  • Berthet, C., Aleem, E., Coppola, V., Tessarollo, L., and Kaldis, P. (2003) Cdk2 knockout mice are viable. Curr Biol, 13, 1775–1785.

    Article  CAS  PubMed  Google Scholar 

  • Berthet, C., Klarmann, K. D., Hilton, M. B., Suh, H. C., Keller, J. R., Kiyokawa, H., and Kaldis, P. (2006) Combined loss of Cdk2 and Cdk4 Results in embryonic lethality and Rb hypophosphorylation. Dev Cell, 10, 563–573.

    Article  CAS  PubMed  Google Scholar 

  • Bishop, A. C., Ubersax, J. A., Petsch, D. T., Matheos, D. P., Gray, N. S., Blethrow, J., Shimizu, E., Tsien, J. Z., Schultz, P. G., Rose, M. D., Wood, J. L., Morgan, D. O., and Shokat, K. M. (2000) A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature, 407, 395–401.

    Article  CAS  PubMed  Google Scholar 

  • Bloom, J. and Cross, F. R. (2007) MulTiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol, 8, 149–160.

    Article  CAS  PubMed  Google Scholar 

  • Booher, R. N., Alfa, C. E., Hyams, J. S., and Beach, D. H. (1989) The fission yeast cdc2/cdc13/suc1 protein kinase: regulation of catalytic activity and nuclear localization. Cell, 58, 485–497.

    Article  CAS  PubMed  Google Scholar 

  • Burkard, M. E., Randall, C. L., Larochelle, S., Zhang, C., Shokat, K. M., Fisher, R. P., and Jallepalli, P. V. (2007) Chemical genetics reveals the requirement for Polo-like kinase 1 activity in positioning RhoA and triggering cytokinesis in human cells. Proc Natl Acad Sci U S A, 104, 4383–4388.

    Article  CAS  PubMed  Google Scholar 

  • Chow, J. P., Siu, W. Y., Ho, H. T., Ma, K. H., Ho, C. C., and Poon, R. Y. (2003) Differential contribution of inhibitory phosphorylation of CDC2 and CDK2 for unperturbed cell cycle control and DNA integrity checkpoints. J Biol Chem, 278, 40815–40828.

    Article  CAS  PubMed  Google Scholar 

  • Desai, D., Wessling, H. C., Fisher, R. P., and Morgan, D. O. (1995) The effect of phosphorylation by CAK on cyclin binding by CDC2 and CDK2. Mol Cell Biol, 15, 345–350.

    CAS  PubMed  Google Scholar 

  • Diffley, J. F. (2004) Regulation of early events in chromosome replication. Curr Biol, 14, R778–R786.

    Article  CAS  PubMed  Google Scholar 

  • Donaldson, A. D., Raghuraman, M. K., Friedman, K. L., Cross, F. R., Brewer, B. J., and Fangman, W. L. (1998) CLB5-dependent activation of late replication origins in S. cerevisiae. Mol Cell, 2, 173–182.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, D. L. and Nurse, P. (1996) A single fission yeast mitotic cyclin B p34cdc2 kinase promotes both S-phase and mitosis in the absence of G1 cyclins. EMBO J, 15, 850–860.

    CAS  PubMed  Google Scholar 

  • Fisher, R. P. (2005) Secrets of a double agent: CDK7 in cell-cycle control and transcription. J Cell Sci, 118, 5171–5180.

    Article  CAS  PubMed  Google Scholar 

  • Geng, Y., Yu, Q., Sicinska, E., Das, M., Schneider, J. E., Bhattacharya, S., Rideout, W. M., Bronson, R. T., Gardner, H., and Sicinski, P. (2003) Cyclin E ablation in the mouse. Cell, 114, 431–443.

    Article  CAS  PubMed  Google Scholar 

  • Harbour, J. W., Luo, R. X., Dei Santi, A., Postigo, A. A., and Dean, D. C. (1999) Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell, 98, 859–869.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, J. C. and Haber, J. E. (2006) Surviving the breakup: the DNA damage checkpoint. Annu Rev Genet, 40, 209–235.

    Article  CAS  PubMed  Google Scholar 

  • Hochegger, H., Dejsuphong, D., Sonoda, E., Saberi, A., Rajendra, E., Kirk, J., Hunt, T., and Takeda, S. (2007) An essential role for Cdk1 in S phase control is revealed via chemical genetics in vertebrate cells. J Cell Biol, 178, 257–268.

    Article  CAS  PubMed  Google Scholar 

  • Hochegger, H., Takeda, S., and Hunt, T. (2008) Cyclin-dependent kinases and cell-cycle transitions: does one fit all?. Nat Rev Mol Cell Biol, 9, 910–916.

    Article  CAS  PubMed  Google Scholar 

  • Hu, B., Mitra, J., van den Heuvel, S., and Enders, G. H. (2001) S and G2 phase roles for Cdk2 revealed by inducible expression of a dominant-negative mutant in human cells. Mol Cell Biol, 21, 2755–2766.

    Article  CAS  PubMed  Google Scholar 

  • Ira, G., Pellicioli, A., Balijja, A., Wang, X., Fiorani, S., Carotenuto, W., Liberi, G., Bressan, D., Wan, L., Hollingsworth, N. M., Haber, J. E., and Foiani, M. (2004) DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature, 431, 1011–1017.

    Article  CAS  PubMed  Google Scholar 

  • Kanin, E. I., Kipp, R. T., Kung, C., Slattery, M., Viale, A., Hahn, S., Shokat, K. M., and Ansari, A. Z. (2007) Chemical inhibition of the TFIIH-associated kinase Cdk7/Kin28 does not impair global mRNA synthesis. Proc Natl Acad Sci U S A, 104, 5812–5817.

    Article  CAS  PubMed  Google Scholar 

  • Katsuno, Y., Suzuki, A., Sugimura, K., Okumura, K., Zineldeen, D. H., Shimada, M., Niida, H., Mizuno, T., Hanaoka, F., and Nakanishi, M. (2009) Cyclin A-Cdk1 regulates the origin firing program in mammalian cells. Proc Natl Acad Sci U S A, 106, 3184–3189.

    Article  CAS  PubMed  Google Scholar 

  • Keaton, M. A., Bardes, E. S., Marquitz, A. R., Freel, C. D., Zyla, T. R., Rudolph, J., and Lew, D. J. (2007) Differential susceptibility of yeast S and M phase CDK complexes to inhibitory tyrosine phosphorylation. Curr Biol, 17, 1181–1189.

    Article  CAS  PubMed  Google Scholar 

  • Knight, Z. A. and Shokat, K. M. (2007) Chemical genetics: where genetics and pharmacology meet. Cell, 128, 425–430.

    Article  CAS  PubMed  Google Scholar 

  • Kohli, M., Rago, C., Lengauer, C., Kinzler, K. W., and Vogelstein, B. (2004) Facile methods for generating human somatic cell gene knockouts using recombinant adeno-associated viruses. Nucleic Acids Res, 32, e3.

    Article  PubMed  Google Scholar 

  • Larochelle, S., Merrick, K. A., Terret, M. E., Wohlbold, L., Barboza, N. M., Zhang, C., Shokat, K. M., Jallepalli, P. V., and Fisher, R. P. (2007) Requirements for Cdk7 in the assembly of Cdk1/cyclin B and activation of Cdk2 revealed by chemical genetics in human cells. Mol Cell, 25, 839–850.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K. M., Miklos, I., Du, H., Watt, S., Szilagyi, Z., Saiz, J. E., Madabhushi, R., Penkett, C. J., Sipiczki, M., Bahler, J., and Fisher, R. P. (2005) Impairment of the TFIIH-associated CDK-activating kinase selectively affects cell cycle-regulated gene expression in fission yeast. Mol Biol Cell, 16, 2734–2745.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K. M., Saiz, J. E., Barton, W. A., and Fisher, R. P. (1999) Cdc2 activation in fission yeast depends on Mcs6 and Csk1, two partially redundant Cdk-activating kinases CAKs. Curr Biol, 9, 441–444.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Kung, C., Fishburn, J., Ansari, A. Z., Shokat, K. M., and Hahn, S. (2004) Two cyclin-dependent kinases promote RNA polymerase II transcription and formation of the scaffold complex. Mol Cell Biol, 24, 1721–1735.

    Article  CAS  PubMed  Google Scholar 

  • Lolli, G. and Johnson, L. N. (2005) CAK-Cyclin-dependent activating kinase: a key kinase in cell cycle control and a target for drugs?. Cell Cycle, 4, 572–577.

    CAS  PubMed  Google Scholar 

  • Loog, M. and Morgan, D. O. (2005) Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature, 434, 104–108.

    Article  CAS  PubMed  Google Scholar 

  • Madhani, H. D., Styles, C. A., and Fink, G. R. (1997) MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell, 91, 673–684.

    Article  CAS  PubMed  Google Scholar 

  • Malumbres, M. and Barbacid, M. (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer, 9, 153–166.

    Article  CAS  PubMed  Google Scholar 

  • Malumbres, M., Sotillo, R., Santamaria, D., Galan, J., Cerezo, A., Ortega, S., Dubus, P., and Barbacid, M. (2004) Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell, 118, 493–504.

    Article  CAS  PubMed  Google Scholar 

  • Martín-Castellanos, C., Blanco, M. A., de Prada, J. M., and Moreno, S. (2000) The puc1 cyclin regulates the G1 phase of the fission yeast cell cycle in response to cell size. Mol Biol Cell, 11, 543–554.

    PubMed  Google Scholar 

  • Melo, J. and Toczyski, D. (2002) A unified view of the DNA-damage checkpoint. Curr Opin Cell Biol, 14, 237–245.

    Article  CAS  PubMed  Google Scholar 

  • Merrick, K. A., Larochelle, S., Zhang, C., Allen, J. J., Shokat, K. M., and Fisher, R. P. (2008) Distinct activation pathways confer cyclin binding selectivity on Cdk1 and Cdk2 in human cells. Mol Cell, 32, 662–672.

    Article  CAS  PubMed  Google Scholar 

  • Mondesert, O., McGowan, C. H., and Russell, P. (1996) Cig2, a B-type cyclin, promotes the onset of S in Schizosaccharomyces pombe. Mol Cell Biol, 16, 1527–1533.

    CAS  PubMed  Google Scholar 

  • Morgan, D. O. (2007) The Cell Cycle: Principles of Control, New Science Press Ltd, London.

    Google Scholar 

  • Muratani, M., Kung, C., Shokat, K. M., and Tansey, W. P. (2005) The F Box protein Dsg1/Mdm30 is a transcriptional coactivator that stimulates Gal4 turnover and cotranscriptional mRNA processing. Cell, 120, 887–899.

    Article  CAS  PubMed  Google Scholar 

  • Ortega, S., Prieto, I., Odajima, J., Martin, A., Dubus, P., Sotillo, R., Barbero, J. L., Malumbres, M., and Barbacid, M. (2003) Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet, 35, 25–31.

    Article  CAS  PubMed  Google Scholar 

  • Pagano, M., Pepperkok, R., Verde, F., Ansorge, W., and Draetta, G. (1992) Cyclin A is required at two points in the human cell cycle. EMBO J, 11, 961–971.

    CAS  PubMed  Google Scholar 

  • Peterlin, B. M. and Price, D. H. (2006) Controlling the elongation phase of transcription with P-TEFb. Mol Cell, 23, 297–305.

    Article  CAS  PubMed  Google Scholar 

  • Piatti, S., Bohm, T., Cocker, J. H., Diffley, J. F., and Nasmyth, K. (1996) Activation of S-phase-promoting CDKs in late G1 defines a “point of no return” after which Cdc6 synthesis cannot promote DNA replication in yeast. Genes Dev, 10, 1516–1531.

    Article  CAS  PubMed  Google Scholar 

  • Qiu, H., Hu, C., and Hinnebusch, A. G. (2009) Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters. Mol Cell, 33, 752–762.

    Article  CAS  PubMed  Google Scholar 

  • Rane, S. G., Dubus, P., Mettus, R. V., Galbreath, E. J., Boden, G., Reddy, E. P., and Barbacid, M. (1999) Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation Results in beta-islet cell hyperplasia. Nat Genet, 22, 44–52.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, J. M. and Sherr, C. J. (2003) Bared essentials of CDK2 and cyclin E. Nat Genet, 35, 9–10.

    Article  CAS  PubMed  Google Scholar 

  • Rosenblatt, J., Gu, Y., and Morgan, D. O. (1992) Human cyclin-dependent kinase 2 (CDK2) is activated during the S and G2 phases of the cell cycle and associates with Cyclin A. Proc Natl Acad Sci U S A, 89, 2824–2828.

    Article  CAS  PubMed  Google Scholar 

  • Saiz, J. E. and Fisher, R. P. (2002) A CDK-activating kinase network is required in cell cycle control and transcription in fission yeast. Curr Biol, 12, 1100–1105.

    Article  CAS  PubMed  Google Scholar 

  • Sancar, A., Lindsey-Boltz, L. A., Unsal-Kacmaz, K., and Linn, S. (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem, 73, 39–85.

    Article  CAS  PubMed  Google Scholar 

  • Santamaria, D., Barriere, C., Cerqueira, A., Hunt, S., Tardy, C., Newton, K., Caceres, J. F., Dubus, P., Malumbres, M., and Barbacid, M. (2007) Cdk1 is sufficient to drive the mammalian cell cycle. Nature, 448, 811–815.

    Article  CAS  PubMed  Google Scholar 

  • Scrace, S. F., Kierstan, P., Borgognoni, J., Wang, L. Z., Denny, S., Wayne, J., Bentley, C., Cansfield, A. D., Jackson, P. S., Lockie, A. M., Curtin, N. J., Newell, D. R., Williamson, D. S., and Moore, J. D. (2008) Transient treatment with CDK inhibitors eliminates proliferative potential even when their abilities to evoke apoptosis and DNA damage are blocked. Cell Cycle, 7, 3898–3907.

    CAS  PubMed  Google Scholar 

  • Shapiro, G. I. (2006) Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol, 24, 1770–1783.

    Article  CAS  PubMed  Google Scholar 

  • Sherr, C. J. and Roberts, J. M. (2004) Living with or without cyclins and cyclin-dependent kinases. Genes Dev, 18, 2699–2711.

    Article  CAS  PubMed  Google Scholar 

  • Stern, B. and Nurse, P. (1996) A quantitative model for the cdc2 control of S phase and mitosis in fission yeast. Trends Genet, 12, 345–350.

    Article  CAS  PubMed  Google Scholar 

  • Su, T. T. (2006) Cellular responses to DNA damage: one signal, multiple choices. Annu Rev Genet, 40, 187–208.

    Article  CAS  PubMed  Google Scholar 

  • Tetsu, O. and McCormick, F. (2003) Proliferation of cancer cells despite CDK2 inhibition. Cancer Cell, 3, 233–245.

    Article  CAS  PubMed  Google Scholar 

  • Tsutsui, T., Hesabi, B., Moons, D. S., Pandolfi, P. P., Hansel, K. S., Koff, A., and Kiyokawa, H. (1999) Targeted disruption of CDK4 delays cell cycle entry with enhanced p27(Kip1) activity. Mol Cell Biol, 19, 7011–7019.

    CAS  PubMed  Google Scholar 

  • van den Heuvel, S. and Harlow, E. (1993) Distinct roles for cyclin-dependent kinases in cell cycle control. Science, 262, 2050–2054.

    Article  PubMed  Google Scholar 

  • Viladevall, L., St Amour, C. V., Rosebrock, A., Schneider, S., Zhang, C., Allen, J. J., Shokat, K. M., Schwer, B., Leatherwood, J. K., and Fisher, R. P. (2009) TFIIH and P-TEFb coordinate transcription with capping enzyme recruitment at specific genes in fission yeast. Mol Cell, 33, 738–751.

    Article  CAS  PubMed  Google Scholar 

  • Weiss, W. A., Taylor, S. S., and Shokat, K. M. (2007) Recognizing and exploiting differences between RNAi and small-molecule inhibitors. Nat Chem Biol, 3, 739–744.

    Article  CAS  PubMed  Google Scholar 

  • Wohlbold, L. and Fisher, R. P. (2009) Behind the wheel and under the hood: Functions of cyclin-dependent kinases in response to DNA damage. DNA Repair (Amst), 8, 1018–10124.

    Article  CAS  Google Scholar 

  • Yata, K. and Esashi, F. (2009) Dual role of CDKs in DNA repair: To be, or not to be. DNA Repair ( Amst), 8, 6–18.

    Article  CAS  Google Scholar 

  • Zarkowska, T. and Mittnacht, S. (1997) Differential phosphorylation of the retinoblastoma protein by G1/S cyclin-dependent kinases. J Biol Chem, 272, 12738–12746.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H. S., Gavin, M., Dahiya, A., Postigo, A. A., Ma, D., Luo, R. X., Harbour, J. W., and Dean, D. C. (2000) Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell, 101, 79–89.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Q. and Yik, J. H. (2006) The Yin and Yang of P-TEFb regulation: implications for human immunodeficiency virus gene expression and global control of cell growth and differentiation. Microbiol Mol Biol Rev, 70, 646–659.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank S. Larochelle, T. Malcolm, K.A. Merrick, C.V. St. Amour, L. Viladevall and L. Wohlbold for their contributions, and H.P. Nasheuer for critical review of the manuscript. Work in the lab is supported by N.I.H. grants GM056985 and GM076021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert P. Fisher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fisher, R.P. (2010). Coming Full Circle: Cyclin-Dependent Kinases as Anti-cancer Drug Targets. In: Nasheuer, HP. (eds) Genome Stability and Human Diseases. Subcellular Biochemistry, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3471-7_1

Download citation

Publish with us

Policies and ethics